5. FUNCTIONS-2

Definition: Let $f: A \rightarrow B$ be a function.
i) If for any $x \neq y \in A$ we have $f(x) \neq f(y)$ then we say that f is injective (function) or injection.
ii) If for any $y \in B$ there exists $x \in A$ such that $f(x)=y$ then we say that f is surjective (function) or surjection.
iii) If f is both injective and surjective then it is said to be a bijective (function) or bijection.

Example 1: Let $f:[0,2] \rightarrow[-2,0]$ be a function defined by $f(x)=$ $-\sqrt{4-x^{2}}$. Show that f is bijective.

Solution: If $f\left(x_{1}\right)=f\left(x_{2}\right)$ then we have

$$
\begin{aligned}
-\sqrt{4-x_{1}^{2}}=-\sqrt{4-x_{2}^{2}} & \Rightarrow x_{1}^{2}=x_{2}^{2} \\
& \Rightarrow x_{1}=x_{2} \quad x \in[0,2] .
\end{aligned}
$$

So, f is an injective function.
It is not difficult to show that f is a surjection.
Example 2: Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be two functions and let $f o g=I_{Y}$. Show that
i) f is surjective.
ii) g is injective.

Solution: i) We show that for all $y \in Y$, there exists $x \in X$ such that $y=f(x)$. Since g is well-defined there exists $x \in X$ such that $g(y)=x$ for all $y \in Y$. Now, since f is well-defined, for all $x \in X$ there exists $z \in Y$ such that $f(x)=z$. Then one can have

$$
\begin{aligned}
& f(g(y))=\operatorname{fog}(y)=z \\
& \Rightarrow I_{Y}(y)=z \\
& \Rightarrow y=z \\
& \Rightarrow y=f(x) .
\end{aligned}
$$

So, for all $y \in Y$, there exists $x \in X$ such that $f(x)=y$.
ii) Let $g\left(y_{1}\right)=g\left(y_{2}\right)$. Since $g\left(y_{1}\right)$ and $g\left(y_{2}\right) \in X$ and f is well-defined we can write

$$
f\left(g\left(y_{1}\right)\right)=f g\left(y_{2}\right) \Rightarrow I_{Y}\left(y_{1}\right)=I_{Y}\left(y_{2}\right) \Rightarrow y_{1}=y_{2} .
$$

