6. FUNCTIONS-3

Example 1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by
a) $f(x)=e^{-x^{2}}-\cos (\sin 5 x) \quad$......
b) $f(x)=\tan x-\sqrt[3]{x^{3}-x}$

Determine whether f is even or odd function.

Solution:

a) Since $f(-x)=e^{-(-x)^{2}}-\cos (\sin (-5 x))=e^{-x^{2}}-\cos (\sin 5 x)=f(x)$, f is an even function.
b) Since $f(-x)=\tan (-x)-\sqrt[3]{(-x)^{3}-(-x)}=-\tan x+\sqrt[3]{x^{3}-x}=-f(x)$, f is an odd function.

Example 2: Prove that
i) If f is an increasing function, $-f$ is a decreasing function.
ii) If f is a decreasing function, $-f$ is a increasing function.

Solution:
i) Let f is an increasing function. Then we have

$$
\begin{aligned}
x_{1}<x_{2} & \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right) \\
& \Rightarrow-f\left(x_{1}\right)>-f\left(x_{2}\right) \\
& \Rightarrow(-f)\left(x_{1}\right)>(-f)\left(x_{2}\right)
\end{aligned}
$$

which shows that $-f$ is a decreasing function.
ii) Homework.

