7. SEQUENCES AND LIMIT

Definition: A function whose domain is \mathbb{N} is called a sequence.
In this note we study with real termed sequences (the range will be real numbers).

Definition: Let $x=\left(x_{n}\right)$ be a sequence and L be a real number. If for any $\varepsilon>0$ there exists n_{0} such that $\left|x_{n}-L\right|<\varepsilon$ whenever $n \geq n_{0}$ then we say that $\left(x_{n}\right)$ is convergent to L. In this case $\left(x_{n}\right)$ is called convergent and L is called the limit of $\left(x_{n}\right)$ and we write $\lim _{n \rightarrow \infty} x_{n}=L$ or $x_{n} \rightarrow L$.

Remark: If a sequence is not convergent then it is said to be divergent.
Theorem: A monotone sequence is convergent if and only if it is bounded.
Example 1: Find the limit of each of the following sequences:
a) $\left(a_{n}\right)=\left(\frac{n^{2}-2 n+3}{5 n^{3}}\right)$
b) $\left(b_{n}\right)=\left(1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+\ldots+(-1)^{n-1} \frac{1}{3^{n-1}}\right)$

Solution:

a) We have $\lim _{n \rightarrow \infty} \frac{n^{2}-2 n+3}{5 n^{3}}=\lim _{n \rightarrow \infty} \frac{1}{5 n}-\lim _{n \rightarrow \infty} \frac{2}{5 n^{2}}+\lim _{n \rightarrow \infty} \frac{3}{5 n^{3}}=0$.
b) We get

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+\ldots+(-1)^{n-1} \frac{1}{3^{n-1}}\right) & =\lim _{n \rightarrow \infty} \frac{1-\left(-\frac{1}{3}\right)^{n}}{1-\left(-\frac{1}{3}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{3\left[1-\left(-\frac{1}{3}\right)^{n}\right]}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

Example 2: Let $\left(x_{n}\right)$ be the sequence defined by $x_{1}=1, x_{n}=\frac{2}{5-x_{n-1}}$ for $n \geq 2$. Find $\lim _{n} x_{n}$.

Solution: We can use the theorem above. Firstly, we will show that $\left(x_{n}\right)$ is monotone. Since $x_{1}=1$ and $x_{2}=\frac{1}{2}$ we have $x_{1}>x_{2}$. Now let $x_{k}>x_{k+1}$. Then we have

$$
\begin{aligned}
x_{k}>x_{k+1} & \Rightarrow-x_{k}<-x_{k+1} \\
& \Rightarrow 5-x_{k}<5-x_{k+1} \\
& \Rightarrow \frac{2}{5-x_{k}}>\frac{2}{5-x_{k+1}} \\
& \Rightarrow x_{k+1}>x_{k+2} .
\end{aligned}
$$

Hence, from mathematical induction we get that $\left(x_{n}\right)$ is a monoton decreasing sequence. Since $\left(x_{n}\right)$ sequence is monotonic decreasing it is bounded above and $x_{1}=1$ is an upper bound. We show that $x_{n}>0$ for all $n \geq 2$. For this purpose let $x_{k}>0$. Then we get

$$
\begin{aligned}
x_{k}>0 & \Rightarrow-x_{k}<0 \\
& \Rightarrow 5-x_{k}<5 \\
& \Rightarrow \frac{2}{5}<\frac{2}{5-x_{k}} \\
& \Rightarrow 0<x_{k+1}
\end{aligned}
$$

Then $\left(x_{n}\right)$ is bounded below. Since it is bounde both above and below, it is bounded. Thus the limit exits.
Let $x_{n} \rightarrow L$. Then $x_{n-1} \rightarrow L$. So we have

$$
\begin{aligned}
x_{n}=\frac{2}{5-x_{n-1}} & \Rightarrow \lim _{n} x_{n}=\lim _{n} \frac{2}{5-x_{n-1}} \\
& \Rightarrow L=\frac{2}{5-L} \\
& \Rightarrow L_{1,2}=\frac{5 \pm \sqrt{17}}{2}
\end{aligned}
$$

Since $0<x_{n} \leq 1$ for all $n, 0<L \leq 1$ we have $L=\frac{5-\sqrt{17}}{2}$.
Example 3: Calculate the following limits:
a) $\lim _{n}\left(2^{n}+3^{n}\right)^{\frac{1}{n}}$
b) $\lim _{n} \frac{1}{\sqrt{n}}\left(1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}\right)$.

Solution:

a) For all $n \in \mathbb{N}$ we can write

$$
\begin{aligned}
3^{n} \leq 2^{n}+3^{n} \leq 3^{n}+3^{n} & \Rightarrow 3^{n} \leq 2^{n}+3^{n} \leq 23^{n} \\
& \Rightarrow 3 \leq\left(2^{n}+3^{n}\right)^{\frac{1}{n}} \leq 2^{\frac{1}{n}} 3
\end{aligned}
$$

Since $\lim _{n} 3=3$ and $\lim _{n} 2^{\frac{1}{n}} .3=3$, from the Sandvich Theorem

$$
\lim _{n}\left(2^{n}+3^{n}\right)^{\frac{1}{n}}=3
$$

b) Let $x_{n}=1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}$ and $y_{n}=\sqrt{n}$. Note that $\left(y_{n}\right)$ is increasing and $y_{n} \rightarrow \infty$. From Stolz Theorem we obtain

$$
\begin{aligned}
\lim _{n} \frac{x_{n}}{y_{n}} & =\lim _{n} \frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}} \\
& =\lim _{n} \frac{\left(1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}\right)-\left(1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n-1}}\right)}{\sqrt{n}-\sqrt{n-1}} \\
& =\lim _{n} \frac{\frac{1}{\sqrt{n}}}{\sqrt{n}-\sqrt{n-1}} \\
& =\lim _{n} \frac{\sqrt{n}+\sqrt{n+1}}{\sqrt{n}(n-(n-1))} \\
& =\lim _{n}\left(1+\sqrt{\frac{n+1}{n}}\right)=2 .
\end{aligned}
$$

