
7. SEQUENCES AND LIMIT
De�nition: A function whose domain is N is called a sequence.
In this note we study with real termed sequences (the range will be real

numbers).
De�nition: Let x = (xn) be a sequence and L be a real number. If for any

" > 0 there exists n0 such that jxn � Lj < " whenever n � n0 then we say that
(xn) is convergent to L. In this case (xn) is called convergent and L is called
the limit of (xn) and we write lim

n!1
xn = L or xn ! L.

Remark: If a sequence is not convergent then it is said to be divergent.
Theorem: A monotone sequence is convergent if and only if it is bounded.
Example 1: Find the limit of each of the following sequences:
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Example 2: Let (xn) be the sequence de�ned by x1 = 1, xn = 2
5�xn�1 for

n � 2: Find lim
n
xn.

Solution: We can use the theorem above. Firstly, we will show that (xn)
is monotone. Since x1 = 1 and x2 = 1

2 we have x1 > x2: Now let xk > xk+1.
Then we have

xk > xk+1 ) �xk < �xk+1
) 5� xk < 5� xk+1
) 2
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5�xk+1
) xk+1 > xk+2:

Hence, from mathematical induction we get that (xn) is a monoton decreas-
ing sequence. Since (xn) sequence is monotonic decreasing it is bounded above
and x1 = 1 is an upper bound. We show that xn > 0 for all n � 2: For this
purpose let xk > 0. Then we get
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Then (xn) is bounded below. Since it is bounde both above and below, it is
bounded. Thus the limit exits.
Let xn ! L: Then xn�1 ! L: So we have
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Since 0 < xn � 1 for all n, 0 < L � 1 we have L = 5�
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Example 3: Calculate the following limits:
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Solution:
a) For all n 2 N we can write

3n � 2n + 3n � 3n + 3n ) 3n � 2n + 3n � 23n
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