8. LIMIT OF FUNCTIONS

Definition: Let $f : A \to \mathbb{R}$ be a function and let $x_0 \in A'$. If for any $\varepsilon > 0$ there exists $\delta > 0$ such that $|f(x) - L| < \varepsilon$ whenever $|x - x_0| < \delta$ we say that the limit of f at point x_0 is L. In this case we write $\lim_{x \to x_0} f(x) = L$.

Definition: Let A be an unbounded subset of real numbers and let $f : A \to \mathbb{R}$ be a function. If for any $\varepsilon > 0$ there exists M > 0 such that $|f(x) - L| < \varepsilon$ whenever $x \ge M$ then we say that the limit of f as x approaching infinity is equal to L. In yhis case we write $\lim_{x\to\infty} f(x) = L$. Similar definition can be given for $\lim_{x\to\infty} f(x) = L$.

Definition: Let $f: A \to \mathbb{R}$ be a function and let $x_0 \in A'$. If for any M > 0 there exists $\delta > 0$ such that f(x) > M whenever $|x - x_0| < \delta$ then we say that f diverges infinity as x approaching x_0 . In this case we write $\lim_{x \to x_0} f(x) = \infty$. Similar definition can be given for $\lim_{x \to x_0} f(x) = -\infty$.

Remark: If we use $x_o < x < x_0 + \delta$ or $x_0 - \delta < x < x_0$ instead of $|x - x_0| < \delta$ in the definitions above we define the sided limits at x_0 . These concepts are called right handed and left handed limit, respectively. In these cases we write $\lim_{x \to 0^+} f(x) = L$ and $\lim_{x \to 0^+} f(x) = L$. Of course L can be infinity.

Theorem: $\lim_{x \to x_0^+} f(x) = L$ iff $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = L$.

Example 1: Using the definition of limit prove that

$$\lim_{x \to 0} (2x + 1) = 1.$$

Solution: We show that for all $\varepsilon > 0$ there exits a $\delta > 0$ such that $|(2x+1)-1| < \varepsilon$ whenever $|x| < \delta$. Let $\varepsilon > 0$. If we choose $\delta = \varepsilon/2$ we get

$$\begin{aligned} |(2x+1)-1| &= 2 |x| \\ &< 2\delta = \varepsilon \end{aligned}$$

whenever $|x| < \delta$.

Example 2: Evaluate the following limits.

a)
$$\lim_{x \to 0} \frac{|x|}{x}$$
 b) $\lim_{x \to 2} \frac{(-1)^{[|x|]+1}}{x-2}$

Solution

a) As
$$\lim_{x \to 0^+} \frac{|x|}{x} = 1$$
 and $\lim_{x \to 0^-} \frac{|x|}{x} = -1$ the limit does not exist
b) Since $\lim_{x \to 2^-} \frac{(-1)^{[|x|]+1}}{x-2} = -\infty$ and $\lim_{x \to 2^+} \frac{(-1)^{[|x|]+1}}{x-2} = -\infty$ we have $\lim_{x \to 2} \frac{(-1)^{[|x|]+1}}{x-2} = -\infty$.

Example 3: Calculate the following limits

a) $\lim_{x \to 0}$ b) $\lim_{n} \frac{2x^{2} - 3x - 4}{\sqrt{x^{4} + 1}}.$ Solution: a) $\lim_{x \to 0} \frac{\tan x - \sin x}{x^{3}} = \lim_{x \to 0} \frac{\sin x - \sin x}{x^{3}}$ $= \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{x^{3} \cos x}$ $= \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{x^{3} \cos x}$ $= \lim_{x \to 0} \frac{\sin x (2 \sin^{2} \frac{x}{2})}{x^{2} \cos x}$ $= \frac{1}{2}.$ b) $\lim_{x \to \infty} \frac{2x^{2} - 3x - 4}{\sqrt{x^{4} + 1}} = \lim_{x \to \infty} \frac{x^{2} (2 - \frac{3}{x} - \frac{4}{x^{2}})}{x^{2} \sqrt{\frac{1}{x^{4} + 1}}}$ $= \frac{1}{2}.$