8. LIMIT OF FUNCTIONS

Definition: Let $f: A \rightarrow \mathbb{R}$ be a function and let $x_{0} \in A^{\prime}$. If for any $\varepsilon>0$ there exists $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $\left|x-x_{0}\right|<\delta$ we say that the limit of f at point x_{0} is L. In this case we write $\lim _{x \rightarrow x_{0}} f(x)=L$.

Definition: Let A be an unbounded subset of real numbers and let $f: A \rightarrow$ \mathbb{R} be a function. If for any $\varepsilon>0$ there exists $M>0$ such that $|f(x)-L|<\varepsilon$ whenever $x \geq M$ then we say that the limit of f as x approaching infinity is equal to L. In yhis case we write $\lim _{x \rightarrow \infty} f(x)=L$. Similar definition can be given for $\lim _{x \rightarrow-\infty} f(x)=L$.

Definition: Let $f: A \rightarrow \mathbb{R}$ be a function and let $x_{0} \in A^{\prime}$. If for any $M>0$ there exists $\delta>0$ such that $f(x)>M$ whenever $\left|x-x_{0}\right|<\delta$ then we say that f diverges infinity as x approaching x_{0}. In this case we write $\lim _{x \rightarrow x_{0}} f(x)=\infty$. Similar definition can be given for $\lim _{x \rightarrow x_{0}} f(x)=-\infty$.

Remark: If we use $x_{o}<x<x_{0}+\delta$ or $x_{0}-\delta<x<x_{0}$ instead of $\left|x-x_{0}\right|<\delta$ in the definitions above we define the sided limits at x_{0}. These concepts are called right handed and left handed limit, respectively. In these cases we write $\lim _{x \rightarrow x^{+}} f(x)=L$ and $\lim _{x \rightarrow x^{-}} f(x)=L$. Of course L can be infinity.

Theoem: $\lim _{x \rightarrow x_{0}} f(x)=L$ iff $\lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)=L$.
Example 1: Using the definition of limit prove that

$$
\lim _{x \rightarrow 0}(2 x+1)=1
$$

Solution: We show that for all $\varepsilon>0$ there exits a $\delta>0$ such that $|(2 x+1)-1|<\varepsilon$ whenever $|x|<\delta$. Let $\varepsilon>0$. If we choose $\delta=\varepsilon / 2$ we get

$$
\begin{aligned}
|(2 x+1)-1| & =2|x| \\
& <2 \delta=\varepsilon
\end{aligned}
$$

whenever $|x|<\delta$.
Example 2: Evaluate the following limits.

$$
\text { a) } \lim _{x \rightarrow 0} \frac{|x|}{x} \quad \text { b) } \lim _{x \rightarrow 2} \frac{(-1)^{[|x|]+1}}{x-2}
$$

Solution

a) As $\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=1$ and $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1$ the limit does not exist
b) Since $\lim _{x \rightarrow 2^{-}} \frac{(-1)^{[|x|]+1}}{x-2}=-\infty$ and $\lim _{x \rightarrow 2^{+}} \frac{(-1)^{[|x|]+1}}{x-2}=-\infty$ we have $\lim _{x \rightarrow 2} \frac{(-1)^{[|x|]+1}}{x-2}=$ $-\infty$.

Example 3: Calculate the following limits
a) $\lim _{x \rightarrow 0}$
b) $\lim _{n} \frac{2 x^{2}-3 x-4}{\sqrt{x^{4}+1}}$.

Solution:

a)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\frac{\sin x}{\cos x}-\sin x}{x^{3}} \\
& =\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{x^{3} \cos x} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x} \frac{\left(2 \sin ^{2} \frac{x}{2}\right)}{x^{2} \cos x} \\
& =\frac{1}{2} .
\end{aligned}
$$

b)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x-4}{\sqrt{x^{4}+1}} & =\lim _{x \rightarrow \infty} \frac{x^{2}\left(2-\frac{3}{x}-\frac{4}{x^{2}}\right)}{x^{2} \sqrt{\frac{1}{x^{4}}+1}} \\
& =\frac{1}{2}
\end{aligned}
$$

