9. CONTINUITY

Definition: Let $f: A \rightarrow \mathbb{R}$ be a function and let $x_{0} \in A$. If for any $\varepsilon>0$ there exists $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ whenever $\left|x-x_{0}\right|<\delta$ we say that f is continuous at point x_{0}.

Remark: If we use $x_{o}<x<x_{0}+\delta$ or $x_{0}-\delta<x<x_{0}$ instead of $\left|x-x_{0}\right|<\delta$ in the definition above we define the continuity from right and left, respectively.

Theorem: f is continuous at x_{0} if and only if it is continuous both from right and left.

If we consider the definition of the concept of the limit we can get the following corollary:

Corollary: f is continuous at x_{0} if and only if $\lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)=$ $f\left(x_{0}\right)$.

Remark: It is clear from the definition that a function f is continuous at a point that is in the domain and is not an accumulation point. Therefore, we should investigate the continuity of a function at the points of the domain that are accumulation points.

Definition: A point where f is not continuous is called a discontinuity point.

Definition: Let $f: A \rightarrow \mathbb{R}$ be a function. If for any $\varepsilon>0$ there exists $\delta>0$ such that $|f(x)-f(t)|<\varepsilon$ whenever $|x-t|<\delta$ we say that f is uniformly continuous over A.

Note that if f is uniformly continuous then it is continuous over the domain.
Example 1: Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=2 x+5$ is continuous at $x_{0}=2$.

Solution: We will show that for all $\varepsilon>0$ there exits a $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ whenever $\left|x-x_{0}\right|<\delta$.

For all $\varepsilon>0$ if we choose $\delta=\frac{\varepsilon}{2}$ we have

$$
\begin{aligned}
|f(x)-f(2)| & =|2 x+5-9| \\
& =2|x-2| \\
& <2 \delta=\varepsilon
\end{aligned}
$$

Example 2: If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{cll}
\sin x & , & x \leq \frac{\pi}{2} \\
a x+\pi & , & x>\frac{\pi}{2}
\end{array}\right.
$$

is continuous everywhere then determine a.
Solution: It is obvious that f is continuous for $x \neq \frac{\pi}{2}$. If f is continuous at $x_{0}=\frac{\pi}{2}$ then we know that $\lim _{x \rightarrow \frac{\pi}{2}-_{-}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}+} f(x)=f\left(\frac{\pi}{2}\right)$. Since

$$
\begin{aligned}
\lim _{x \rightarrow \frac{\pi}{2}-} f(x) & =\lim _{x \rightarrow \frac{\pi}{2}-} \sin x=1 \\
\lim _{x \rightarrow \frac{\pi}{2}+} f(x) & =\lim _{x \rightarrow \frac{\pi}{2}+} f(x)=a \frac{\pi}{2}+\pi
\end{aligned}
$$

we get $a=\frac{2-2 \pi}{\pi}$.
Example 3: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)=x^{2}+\operatorname{sgn}\left(x^{2}-1\right) .
$$

Determine the points of discontinuity. For each point of dicontinuity determine types of discontinuities.

Solution: We can write

$$
\begin{aligned}
f(x) & =\left\{\begin{array}{cll}
x^{2}-1 & , & x^{2}<1 \\
x^{2} & , & x^{2}=1 \\
x^{2}+1 & , & x^{2}>1
\end{array}\right. \\
& =\left\{\begin{array}{ccc}
x^{2}+1 & , & -\infty<x<-1 \\
x^{2} & , & x=-1 \\
x^{2}-1 & , & -1<x<1 \\
x^{2} & , & x=1 \\
x^{2}+1 & , & x>1
\end{array}\right.
\end{aligned}
$$

It is clear that f is continuous except ${ }_{+}^{-} 1$. As

$$
\begin{aligned}
\lim _{x \rightarrow-1^{-}} f(x) & =\lim _{x \rightarrow-1^{-}} x^{2}+1=2 \\
\lim _{x \rightarrow-1^{+}} f(x) & =\lim _{x \rightarrow-1^{+}} x^{2}-1=0
\end{aligned}
$$

f is discontinuous at $x=-1$. The type of discontinuity is jump discontinuity. Since

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}} x^{2}-1=0 \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} x^{2}+1=2
\end{aligned}
$$

f is discontinuous at $x=1$. The type of discontinuity is again jump discontinuity.

Example 4: Is the function f defined by $f(x)=x \sin x$ is uniformly continuous on \mathbb{R} ?

Solution: Let $\left(x_{n}\right)=(n \pi)$ and $\left(y_{n}\right)=\left(n \pi+\frac{1}{n}\right)$. We get

$$
\left|x_{n}-y_{n}\right|=\frac{1}{n} \rightarrow 0,(n \rightarrow \infty)
$$

Then for any $\varepsilon>0$ there exists n_{0} such that $\left|x_{n}-y_{n}\right|<\delta$ whenever $n \geq n_{0}$. On the other hand for all $n \geq n_{0}$

$$
\begin{aligned}
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| & =\left|x_{n} \sin x_{n}-y_{n} \sin y_{n}\right| \\
& =\left|n \pi \sin n \pi-\left(n \pi+\frac{1}{n}\right) \sin \left(n \pi+\frac{1}{n}\right)\right| \\
& =\left(\left.\left(n \pi+\frac{1}{n}\right)\left(\sin n \pi \cos \frac{1}{n}+\sin \frac{1}{n} \cos n \pi\right) \right\rvert\,\right. \\
& =\left(n \pi+\frac{1}{n}\right) \sin \frac{1}{n} \\
& =\pi \frac{\sin \frac{1}{n}}{\frac{1}{n}}+\frac{1}{n} \sin \frac{1}{n} \\
& \rightarrow \pi,^{(n \rightarrow \infty) .}
\end{aligned}
$$

Then for $\varepsilon=1$ we can write $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|>1$. Hence, f is not uniformly countinuous.

