12. APPLICATIONS OF DERIVATIVE

Example 1: Consider the gunction defined by $f(x)=\frac{x}{x^{2}+1}$.
a) Determine the critical points.
b) Identify, the intervals on which f is increasing and decreasing.
c) Find the local maximum and local minimum points and values.

Solution:

$$
f(x)=\frac{x}{x^{2}+1} \quad \Rightarrow \quad f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}
$$

a) $f^{\prime}(x)=0 \Leftrightarrow x= \pm 1$. (critical points)
b) Since $f^{\prime}(x)>0$ for $x \in(-1,1), f$ is increasing in $(-1,1)$.

Since $f^{\prime}(x)<0$ for $x \in(-\infty, 1) \cup(1, \infty), f$ is decreasing in $(-\infty, 1) \cup(1, \infty)$.
c) $f^{\prime \prime}(x)=\frac{2 x^{5}-6 x-4 x^{3}}{\left(x^{2}+1\right)^{4}}$
$f^{\prime \prime}(-1)=\frac{1}{2}>0 \Rightarrow x=-1 \quad$ relative min point
$f^{\prime \prime}(1) \quad=\frac{-1}{2}<0 \Rightarrow x=1 \quad$ relative max point
$f(-1)=\frac{-1}{2} \quad$ relative min value
$f(1) \quad=\frac{1}{2} \quad$ relative max value
Example 2: Find the equation of the tangent line to the curve $y=x^{3}-6 x+2$ that is parallel to the line $y=6 x-2$.

Solution: If the tangents have to be parallel to the line then they must have the same gradient. i.e. slope should be 6 .

$$
y=x^{3}-6 x+2 \Rightarrow y^{\prime}=3 x^{2}-6=6 \Rightarrow x= \pm 2
$$

Now as $x=2 \Rightarrow y=-2$, the equation $y+2=6(x-2) \Rightarrow y=6 x-14$ obtained and as $x=-2 \Rightarrow y=6$ the equation $y-6=6(x-2) \Rightarrow y=6 x=18$ obtained.

Example 3: Show that the ineuality $n(b-a) a^{n-1}<b^{n}-a^{n}<n(b-a) b^{n-1}$ holds for any $0<a<b$.

Solution: Define

$$
\begin{aligned}
f:[a, b] & \rightarrow \mathbb{R} \\
x & \rightarrow f(x)=x^{n}
\end{aligned}
$$

f is differantiable in (a, b) and continuous in $[a, b]$. From the mean value theorem there exists $c \in(a, b)$ such that $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$. So:

$$
\begin{array}{rlll}
f^{\prime}(x)=n x^{n-1} & ; f^{\prime}(c)=n c^{n-1}=\frac{b^{n}-a^{n}}{b-a} . & \\
c \in(a, b) & \Rightarrow & a<c<b & \\
& \Rightarrow & a^{n-1}<c^{n-1}<b^{n-1} & ; a, b, c>0 \\
& \Rightarrow & n a^{n-1}<n c^{n-1}<n b^{n-1} & \\
& \operatorname{from}(1) & n(b-a) a^{n-1}<b^{n}-a^{n}<n(b-a) b^{n-1} &
\end{array}
$$

Example 4: Find the intervals on which the curve $y=e^{-x^{2}}$ is convex and concave.
Solution: We have: $y^{\prime}=-2 x e^{-x^{2}} \Rightarrow y^{\prime \prime}=-2 e^{-x^{2}}-2 x(-2 x) e^{-x^{2}}$ and $y^{\prime \prime}=0 \Leftrightarrow e^{-x^{2}}\left(4 x^{2}-2\right)=0 \Rightarrow x_{1,2}= \pm \frac{1}{\sqrt{2}}$.
Since $y^{\prime \prime}>0$ for all $x \in\left(-\infty, \frac{-1}{\sqrt{2}}\right) \cup\left(\frac{1}{\sqrt{2}}, \infty\right)$ then the curve is convex on this interval. On the other hand as $y^{\prime \prime}<0$ for all $x \in\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ then the curve is
concave on this interval.
Example 5: Find the maksimum volume of the circular cylinder which can be inscribed in a sphere of radius a?

Solution: As we have
$(2 r)^{2}+h^{2}=(2 a)^{2} \Rightarrow h^{2}=4\left(a^{2}-r^{2}\right) \Rightarrow h=2 \sqrt{a^{2}-r^{2}}$. $V=\pi r^{2} h=2 \pi r^{2} \sqrt{a^{2}-r^{2}}$
$V^{\prime}(r)=4 \pi r \sqrt{a^{2}-r^{2}}-\frac{2 \pi r^{3}}{\sqrt{a^{2}-r^{2}}}=0 \Rightarrow r=\sqrt{\frac{2}{3}} a$.
$V^{\prime \prime}\left(\sqrt{\frac{2}{3}} a.\right)<0$ we calculate the maximum volume as $V=\pi \frac{2}{3} a^{3} 2 \sqrt{a^{2}-\frac{2}{3} a^{2}}=$ $\frac{4 \sqrt{3}}{9} \pi a^{3}$.

