Example-2

For the region S in Example 1, show that the sum of the areas of the upper approximating rectangles approaches $\frac{1}{3}$, that is

$$
\lim _{n \rightarrow \infty} R_{n}=\frac{1}{3}
$$

Solution

R_{n} is the sum of the areas of the n rectangles in Figure 7.

Figure 7

From Figures 8 and 9 it appears that, as n increases, both L_{n} and R_{n} become better and better approximations to the area of S.

Therefore, we define the area A to be the limit of the sums of the areas of the approximating rectangles, that is,

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} L_{n}=\frac{1}{3}
$$

FIGURE 8

FIGURE 9

The area is the number that is smaller than all upper sums and larger than all lower sums

Let's apply the idea of Examples 1 and 2 to the more general region S of Figure 1. We start by subdividing S into n strips $S_{1}, S_{2}, \ldots, S_{n}$ of equal width as in Figure 10.

Figure 10

The width of the interval $[a, b]$ is $b-a$, so the width of each of the n strips is

$$
\Delta x=\frac{b-a}{n}
$$

These strips divide the interval $[\mathrm{a}, \mathrm{b}]$ into n subintervals

$$
\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right], \ldots,\left[x_{n-1}, x_{n}\right]
$$

where $x_{0}=a$ and $x_{n}=b$.

The right endpoints of the subintervals are $x_{1}=a+\Delta x, \quad x_{2}=a+2 \Delta x, \quad x_{3}=a+3 \Delta x, \ldots$

Let's approximate the i th strip S_{i} by a rectangle with width Δx and height $f\left(x_{i}\right)$, which is the value of f at the right endpoint (see Figure 11).

Figure 11

Then the area of the i th rectangle is $f\left(x_{i}\right) \Delta x$. What we think of intuitively as the area of S is approximated by the sum of the areas of these rectangles, which is

$$
R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x
$$

Figure 12 shows this approximation for $n 2,4,8$, and 12 . Notice that this approximation appears to become better and better as the number of strips increases, that is, as $n \rightarrow$ ∞.

(a) $n=2$

(c) $n=8$

(b) $n=4$

(d) $n=12$

Figure 12

Therefore, we define the area A of the region S in the following way.

Definition 1. The area A of the region S that lies under the graph of the continuous function is the limit of the sum of the areas of approximating rectangles:
$A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x\right]$ (1)

It can be proved that the limit in Definition 1 always exists, since we are assuming that is continuous.

It can also be shown that we get the same value if we use left endpoints:

$$
\begin{align*}
A & =\lim _{n \rightarrow \infty} L_{n} \\
& =\lim _{n \rightarrow \infty}\left[f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\cdots+f\left(x_{n-1}\right) \Delta x\right] \tag{2}
\end{align*}
$$

In fact, instead of using left endpoints or right endpoints, we could take the height of the i th rectangle to be the value of f at any number x_{i}^{*} in the i th subinterval $\left[x_{i-1}, x_{i}\right]$.

We call the numbers $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ the sample points.

Figure 13 shows approximating rectangles when the sample points are not chosen to be endpoints.

Figure 13

So a more general expression for the area of S is

$$
\begin{equation*}
A=\lim _{n \rightarrow \infty}\left[f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+\cdots+f\left(x_{n}^{*}\right) \Delta x\right] \tag{3}
\end{equation*}
$$

We often use sigma notation to write sums with many terms more compactly. For instance,

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x
$$

So the expressions for area in Equations 1, 2, and 3 can be written as follows:

$$
\begin{aligned}
A & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
A & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x \\
A & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
\end{aligned}
$$

