If $a=b$, then $\Delta x=0$ and so

We now develop some basic properties of integrals that will help us to evaluate integrals in a simple manner. We assume that f and g are continuous functions.

Properties of the Integral

1. $\int_{a}^{b} c d x=c(b-a)$, where c is any constant
2. $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
3. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$, where c is any constant
4. $\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$

Example-6

Use the properties of integrals to evaluate

$$
\int_{0}^{1}\left(4+3 x^{2}\right) d x
$$

The next property tells us how to combine integrals of the same function over adjacent intervals:

$$
\text { 5. } \int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x
$$

This is not easy to prove in general, but for the case where $f(x) \geqslant 0$ and $a<c<b$ Property 5 can be seen from the geometric interpretation in Figure 15: The area under $y=f(x)$ from a to c plus the area from c to b is equal to the total area from a to b.

FIGURE 15

Example-7

If it is known that $\int_{0}^{10} f(x) d x=17$ and $\int_{0}^{8} f(x) d x=12$, find $\int_{8}^{10} f(x) d x$.

Notice that Properties $1-5$ are true whether $a<b, a=b$, or $a>b$. The following properties, in which we compare sizes of functions and sizes of integrals, are true only if $a \leqslant b$.

Comparison Properties of the Integral

6. If $f(x) \geqslant 0$ for $a \leqslant x \leqslant b$, then $\int_{a}^{b} f(x) d x \geqslant 0$.
7. If $f(x) \geqslant g(x)$ for $a \leqslant x \leqslant b$, then $\int_{a}^{b} f(x) d x \geqslant \int_{a}^{b} g(x) d x$.
8. If $m \leqslant f(x) \leqslant M$ for $a \leqslant x \leqslant b$, then

$$
m(b-a) \leqslant \int_{a}^{b} f(x) d x \leqslant M(b-a)
$$

For Property 8, note that if f is continuous we could take m and M to be the absolute minimum and maximum values of f on the inteval $[a, b]$.
Example-8
Use Property 8 to estimate $\int_{0}^{1} e^{-x^{2}} d x$.

Solution

 of the Duverectangle and les than the rea of the square.

