## Series

An infinite series (or series) is the sum of an infinite sequence of numbers

$$
a_{1}+a_{2}+\cdots+a_{n}+\cdots
$$

The goal of this section is to understand the meaning of such an infinite sum and to develop methods to calculate it. The number $a_{n}$ is the nth term of the series. The sequence $\left\{s_{n}\right\}$ defined by

$$
\begin{gathered}
s_{1}=a_{1} \\
s_{2}=a_{1}+a_{2} \\
\cdots \\
s_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}
\end{gathered}
$$

is the sequence of partial sums of the series, the number $s_{n}$ being the nth partial sum.

If the sequence of partial sums converges to a limit $L$, we say that the series converges and that its sum is $L$. In this case we also write

$$
a_{1}+a_{2}+\cdots+a_{n}+\cdots=\sum_{n=1}^{\infty} a_{n}=L
$$

If the sequence of partial sums of the series does not converge, we say that the series diverges.
Thus the sum of a series is the limit of the sequence of partial sums. So when we write $\sum_{n=1}^{\infty} a_{n}=s$, we mean that by adding sufficiently many terms of the series we can get as close as we like to the number $s$. Notice that

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}
$$

4 The geometric series

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\cdots
$$

is convergent if $|r|<1$ and its sum is

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r} \quad|r|<1
$$

If $|r| \geqslant 1$, the geometric series is divergent.
Each term is obtained from the preceding one by multiplying it by the common ratio .

In words: The sum of a convergent geometric series is
first term
1 - common ratio

Some properties of the series are as follows:

8 Theorem If $\Sigma a_{n}$ and $\Sigma b_{n}$ are convergent series, then so are the series $\Sigma c a_{n}$ (where $c$ is a constant), $\sum\left(a_{n}+b_{n}\right)$, and $\sum\left(a_{n}-b_{n}\right)$, and
(i) $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$
(ii) $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$
(iii) $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n}$

