
The wavelength   is defined as the distance between two successive maxima (or minima or any other 

reference points): 
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Thus, wavelength   also represents the distance covered in one period of the wave.  

Similarly, 𝐸𝑥
−(𝑧, 𝑡) = 𝐸0

− cos(𝜔𝑡 + 𝑘𝑧)represents a plane wave traveling in the –z direction. 

 

The associated magnetic field can be found as follows: 
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When the wave travels in free space 
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which represents the magnetic field of the wave traveling in the +z direction. 

 

For the negative traveling wave, 
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For the plane waves described, both the E & H fields are perpendicular to the direction of propagation, 

and these waves are called TEM (transverse electromagnetic) waves. The E & H field components of a 

TEM wave is shown bwlow: 

 



TEM Waves: 

For a uniform plane wave propagating in z-direction 
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For a wave propagating in any arbitrary direction that doesn’t necessarily coincide any axis, the more 

general form of the above equation is 
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This equation satisfies Helmholtz’s equation 
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We define wave number vector : 

𝑘⃑ = 𝑘𝑥𝑥̂ + 𝑘𝑦𝑦̂ + 𝑘𝑧𝑧̂ 

 

And radius vector from the origin 

𝑅⃑ = 𝑥𝑥 + 𝑦𝑦̂ + 𝑧𝑧̂ 

Therefore we can write 
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Here 𝑘⃑ ∙ 𝑅⃑ =constant is a plane of constant phase and uniform amplitude just in the case of

0( ) jkzz eE E , z = constant denotes a plane of constant phase and uniform amplitude. 

If the region is charge free, 
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Using the vector identity  . . .f f f    A A A  and noting that 𝐸⃑ 0 is constant we can write, 

𝐸⃑ 0 • ∇𝑒−𝑗𝑘⃑ ∙𝑅⃑ = 0 



𝐸⃑ 0 • (
𝜕

𝜕𝑥
𝑥̂ +

𝜕

𝜕𝑥
𝑦̂ +

𝜕

𝜕𝑥
𝑧̂)∇𝑒−𝑗𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧 = 0 
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i.e., 𝐸⃑ 0 is transverse to the direction of the propagation. 

 

The corresponding magnetic field can be computed as follows: 
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Using the vector identity, 

∇ × (α𝐸⃑ ) = 𝛼∇ × 𝐸⃑ + ∇𝛼 × 𝐸⃑  

Since 𝐸⃑ 0 is constant one can write, 
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where   is the intrinsic impedance of the medium and 𝑘⃑ = 𝑘𝑛̂ 

𝐻⃑⃑ (𝑅) is perpendicular to both 𝑘⃑  and 𝐸⃑⃑⃑ (𝑅).  

 

Thus the electromagnetic wave represented by 𝐸⃑ (𝑅) and 𝐻⃑⃑ (𝑅)  is a TEM wave. 


