The wavelength λ is defined as the distance between two successive maxima (or minima or any other reference points):

$$
\begin{gathered}
(\omega t-k z)-[\omega t-k(z+\lambda)]=2 \pi \\
k \lambda=2 \pi \\
\lambda=\frac{2 \pi}{k}
\end{gathered}
$$

Substituting $k=\frac{\omega}{v_{P}}$

$$
\begin{gathered}
\lambda=\frac{2 \pi v_{P}}{2 \pi f}=\frac{v_{P}}{f} \\
\lambda f=v_{P}
\end{gathered}
$$

Thus, wavelength λ also represents the distance covered in one period of the wave.
Similarly, $E_{x}^{-}(z, t)=E_{0}^{-} \cos (\omega t+k z)$ represents a plane wave traveling in the $-z$ direction.

The associated magnetic field can be found as follows:

$$
\begin{gathered}
E_{x}^{+}(z)=E_{0}^{+} e^{-j k z} \\
\vec{H}(R)=-\frac{1}{j \omega \mu} \nabla \times \vec{E} \\
=-\frac{1}{j \omega \mu}\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
E_{0}^{+} e^{-j k z} & 0 & 0
\end{array}\right| \\
=\frac{k}{\omega \mu} E_{0}^{+} e^{-j k z} \hat{y} \\
=\frac{E_{0}^{+}}{\eta} e^{-j k z} \hat{y} \\
=H_{0}^{+} e^{-j k z} \hat{y}
\end{gathered}
$$

where $\eta=\frac{\omega \mu}{k}=\frac{\omega \mu}{\omega \sqrt{\mu \varepsilon}}=\sqrt{\frac{\mu}{\varepsilon}}$ is the intrinsic impedance of the medium.

When the wave travels in free space
$\eta_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \cong 120 \pi=377 \Omega$ is the intrinsic impedance of the free space.

$$
\begin{aligned}
= & H_{0}^{+} e^{-j k z} \hat{y} \\
H_{x}^{+}(z, t) & =\frac{E_{0}^{+}}{\eta} \cos (\omega t-k z)
\end{aligned}
$$

which represents the magnetic field of the wave traveling in the $+z$ direction.

For the negative traveling wave,

$$
H_{x}^{-}(z, t)=\frac{E_{0}^{-}}{\eta} \cos (\omega t+k z)
$$

For the plane waves described, both the $E \& H$ fields are perpendicular to the direction of propagation, and these waves are called TEM (transverse electromagnetic) waves. The $E \& H$ field components of a TEM wave is shown bwlow:

TEM Waves:

For a uniform plane wave propagating in z-direction

$$
\boldsymbol{E}(z)=\boldsymbol{E}_{0} e^{-j k z}, E_{0} \text { is a constant vector }
$$

For a wave propagating in any arbitrary direction that doesn't necessarily coincide any axis, the more general form of the above equation is

$$
\boldsymbol{E}(x, y, z)=\boldsymbol{E}_{0} e^{-j k_{x} x-j k_{y} y-j k_{z} z}
$$

This equation satisfies Helmholtz's equation $\nabla^{2} \boldsymbol{E}+k^{2} \boldsymbol{E}=0$ provided,

$$
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=k^{2}=\omega^{2} \mu \varepsilon
$$

We define wave number vector :

$$
\vec{k}=k_{x} \hat{x}+k_{y} \hat{y}+k_{z} \hat{z}
$$

And radius vector from the origin

$$
\vec{R}=x \hat{x}+y \hat{y}+z \hat{z}
$$

Therefore we can write

$$
\vec{E}(R)=\vec{E}_{0} e^{-j \vec{k} \cdot \vec{R}}
$$

Here $\vec{k} \cdot \vec{R}=$ constant is a plane of constant phase and uniform amplitude just in the case of $\boldsymbol{E}(z)=\boldsymbol{E}_{0} e^{-j k z}, \mathrm{z}=$ constant denotes a plane of constant phase and uniform amplitude.

If the region is charge free,

$$
\begin{gathered}
\nabla \cdot \vec{E}=0 . \\
\nabla \cdot E_{0} e^{-j \vec{k} \cdot \vec{R}}=0
\end{gathered}
$$

Using the vector identity $\nabla \cdot(f \boldsymbol{A})=\boldsymbol{A} . \nabla f+f \nabla \cdot \boldsymbol{A}$ and noting that \vec{E}_{0} is constant we can write,

$$
\vec{E}_{0} \bullet \nabla e^{-j \vec{k} \cdot \vec{R}}=0
$$

$$
\begin{gathered}
\vec{E}_{0} \cdot\left(\frac{\partial}{\partial x} \widehat{x}+\frac{\partial}{\partial x} \widehat{y}+\frac{\partial}{\partial x} \hat{z}\right) \nabla e^{-j k_{x} x+k_{y} y+k_{z} z}=0 \\
\vec{E}_{0} \bullet \hat{k}=0
\end{gathered}
$$

i.e., \vec{E}_{0} is transverse to the direction of the propagation.

The corresponding magnetic field can be computed as follows:

$$
\begin{gathered}
\vec{H}(R)=-\frac{1}{j \omega \mu} \nabla \times \vec{E} \\
\vec{H}(R)=-\frac{1}{j \omega \mu} \nabla \times \vec{E}_{0} e^{-j \vec{k} \vec{R}}
\end{gathered}
$$

Using the vector identity,

$$
\nabla \times(\alpha \vec{E})=\alpha \nabla \times \vec{E}+\nabla \alpha \times \vec{E}
$$

Since \vec{E}_{0} is constant one can write,

$$
\begin{gathered}
\vec{H}(R)=-\frac{1}{j \omega \mu} \nabla \times \vec{E} \\
\vec{H}(R)=-\frac{1}{j \omega \mu} \nabla e^{-j \vec{k} \cdot \vec{R}} \times \vec{E}_{0} \\
\vec{H}(R)=-\frac{1}{j \omega \mu}\left(-j \vec{k} \times \vec{E}_{0} e^{-j \vec{k} \cdot \vec{R}}\right) \\
\vec{H}(R)=\frac{k}{\omega \mu}\left(\hat{n} \times \vec{E}_{0} e^{-j \vec{k} \cdot \vec{R}}\right) \\
\vec{H}(R)=\frac{1}{\eta}\left(\hat{n} \times \vec{E}_{0} e^{-j \vec{k} \cdot \vec{R}}\right)
\end{gathered}
$$

where η is the intrinsic impedance of the medium and $\vec{k}=k \hat{n}$

$$
\vec{H}(R) \text { is perpendicular to both } \vec{k} \text { and } \vec{E}(R)
$$

Thus the electromagnetic wave represented by $\vec{E}(R)$ and $\vec{H}(R)$ is a TEM wave.

