Integral form of the fundamental postulates
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® Since V X E = 0, line integral of E depends only on the end points
= Electrical work done for a moving charge around a closed path in an
electrostatic field is zero

= f E.dl=0 states conservation of energy in an electrostatic field
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Gauss’ Law
Consider a charge distribution in free space:

Discrete Charge Volume charge Surface charge Line charge
Distribution density density density
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These charges create an electric field, E.If S is a closed surface,
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Electric field vector due to the unit charge at origin:



R=p
0 y
. q
X
- . q R
E_Ep_41't60R2

Electric field vector due to the unit charge at a point different than origin:
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R : Vector fromoriginto the observation point P

R’ : Vector fromorigin to the source point
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Statement of Coulomb’s law:

The force between two point charges is proportional to the product of the charges & inversely
proportional to the square of the distance between the charges:
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Electrostatic Potential

R : Vector fromorigin to the observation point P

R : Vector fromorigin to the source point
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Physical meaning of Electrostatic Potential
Charge ¢ is moved from point ‘a’
to ‘b’ on contour C.
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[ is tangent to C.

The force experienced by ¢ is F
To maintain constant speed,
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Work done from ‘a’ to ‘b’
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AV is the work done to move a unit charge from ‘a’ to b’ in the presence of E

f: Conservative field =>



i)

b
+ Conservative field => _ f E') . Ei is path independent
a

1)
I
=]

+ Conservative field => % E . El)
C

If a reference point, Py with a reference voltage, V(P) is defined:
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Absolute reference point: co Absolute Potential: 0
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