Integral form of the fundamental postulates

$$\nabla \cdot \vec{E} = \frac{\rho_v}{\epsilon_0}$$
Gauss' Law in differential form
$$\int_{V} \nabla \cdot \vec{E} dV = \int_{V} \frac{\rho_v}{\epsilon_0} dV = \frac{1}{\epsilon_0} \int_{V} \rho_v dV$$

$$= \frac{Q_{enclosed}}{\epsilon_0}$$

By Divergence Theorem,

By Stoke's Theorem,

b)

$$\int_{S} \nabla \times \overrightarrow{E} \cdot \overrightarrow{dS} = \oint_{C} \overrightarrow{E} \cdot \overrightarrow{dl}$$

$$\oint_{C} \vec{E} \cdot \vec{dl} = 0$$

$$\nabla \times \vec{E} = \vec{0}$$

2nd Postulate in integral form

2nd Postulate in differential form

Note:

$$\int_{C} \vec{E} \cdot \vec{dl}$$
 gives the voltage drop along path C

 $\oint_C \vec{E} \cdot \vec{dl}$

 \Rightarrow

which is the algebraic sum of the voltages drops around any closed loop (circuit) add up to zero

• i.e.,

$$\oint_C \vec{E} \cdot \vec{dl} = 0$$
 Kirchoff's Voltage Law

- Since $\nabla \times \vec{E} = \vec{0}$, line integral of \vec{E} depends only on the end points
- ⇒ Electrical work done for a moving charge around a closed path in an electrostatic field is zero

$$\Rightarrow \oint_{C} \vec{E} \cdot \vec{dl} = 0$$
 states conservation of energy in an electrostatic field

Gauss' Law

Consider a charge distribution in free space:

These charges create an electric field, \vec{E} . If S is a closed surface,

$$\oint_{\mathbf{S}} \vec{E} \cdot \vec{dS} = \frac{Q_{enclosed}}{\epsilon_0}$$

where $Q_{enclosed}$ is the total charge enclosed within surface ${\it S}$

Electric field vector due to the unit charge at origin:

Electric field vector due to the unit charge at a point different than origin:

 $\overrightarrow{\textbf{R}}: \textit{Vector from origin to the observation point P}$

 $\overrightarrow{R}':$ Vector from origin to the source point

$$\vec{E} = E\hat{\rho} = \frac{q}{4\pi\epsilon_0} \frac{\vec{R} - \vec{R}'}{\left|\vec{R} - \vec{R}'\right|^3} \qquad \frac{V}{m}$$

$$\vec{\rho} = \vec{R} - \vec{R}'$$

$$\widehat{\rho} = \frac{\overrightarrow{\rho}}{\rho}$$

$$\vec{E} = E\widehat{\rho} = \frac{q}{4\pi\epsilon_0 |\vec{R} - \vec{R}'|^2} \frac{\vec{R} - \vec{R}'}{|\vec{R} - \vec{R}'|}$$

$$\vec{E} = E\widehat{\rho} = \frac{q}{4\pi\epsilon_0 \rho^2} \widehat{\rho} = \frac{q}{4\pi\epsilon_0} \frac{\widehat{\rho}}{\rho^2}$$

Statement of Coulomb's law:

The force between two point charges is proportional to the product of the charges & inversely proportional to the square of the distance between the charges:

Electrostatic Potential

 \vec{R} : Vector from origin to the observation point P

 $\overrightarrow{R}': Vector\ from\ origin\ to\ the\ source\ point$

$$\vec{\rho} = \vec{R} - \vec{R}'$$

$$\hat{\rho} = \frac{\vec{\rho}}{\rho} = \frac{\vec{R} - \vec{R}'}{|\vec{R} - \vec{R}'|}$$

$$\frac{\vec{R} - \vec{R}'}{|\vec{R} - \vec{R}'|^3} = \frac{\vec{R} - \vec{R}'}{|\vec{R} - \vec{R}'|^1} \frac{1}{|\vec{R} - \vec{R}'|^2} = \frac{\hat{\rho}}{1} \frac{1}{\rho^2} = \frac{\hat{\rho}}{\rho^2}$$

$$\frac{\vec{R} - \vec{R}'}{|\vec{R} - \vec{R}'|^3} = \frac{\hat{\rho}}{\rho^2} = \frac{\rho \hat{\rho}}{\rho^3} = \frac{\vec{\rho}}{\rho^3}$$

$$\vec{E}(P) = \frac{1}{4\pi\epsilon_0} \int_{D'} dq' \frac{\vec{R} - \vec{R}'}{|\vec{R} - \vec{R}'|^3}$$

$$\vec{E}(P) = \frac{1}{4\pi\epsilon_0} \int_{D'} dq' \frac{\hat{\rho}}{\rho^3}$$

$$\vec{E}(P) = \frac{1}{4\pi\epsilon_0} \int_{D'} dq' \frac{\hat{\rho}}{\rho^2}$$

$$\vec{E}(P) = \frac{1}{4\pi\epsilon_0} \int_{D'} \rho'_V dV' \frac{\hat{\rho}}{\rho^2}$$

$$\nabla\left(\frac{1}{|\vec{R}-\vec{R'}|}\right) = -\frac{\hat{R}}{R^2}$$

$$\nabla\left(\frac{1}{|\vec{R}-\vec{R'}|}\right) = -\frac{\vec{R}-\vec{R'}}{|\vec{R}-\vec{R'}|^3}$$

$$\nabla'\left(\frac{1}{|\vec{R}-\vec{R'}|}\right) = +\frac{\vec{R}-\vec{R'}}{|\vec{R}-\vec{R'}|^3} = -\nabla\left(\frac{1}{|\vec{R}-\vec{R'}|}\right)$$

$$\vec{E}(P) = \frac{1}{4\pi\epsilon_0} \int_{D'} dq' \cdot -\nabla\left(\frac{1}{|\vec{R}-\vec{R'}|}\right)$$

$$\vec{E}(P) = -\nabla\left(\frac{1}{4\pi\epsilon_0} \int_{D'} \frac{dq'}{|\vec{R}-\vec{R'}|}\right)$$

$$\vec{E}(P) = -\nabla(V)$$

$$V(P) = \frac{1}{4\pi\epsilon_0} \int_{D'} \frac{dq'}{|\vec{R}-\vec{R'}|}$$

Check $\nabla \times \vec{E} = \vec{0}$ Check $\nabla \times (-\nabla V) = 0$

Physical meaning of Electrostatic Potential

Charge q is moved from point 'a' to 'b' on contour C.

 \overrightarrow{dl} is tangent to C.

The force experienced by q is \vec{F}_E

$$\overrightarrow{F}_E = q\overrightarrow{E}$$

To maintain constant speed,

$$\vec{F}_{external} = -\vec{F}_E$$

Work done from 'a' to 'b'

$$W = \int_{a}^{b} \vec{F}_{external} \cdot \vec{dl}$$
$$= q \left(- \int_{a}^{b} \vec{E} \cdot \vec{dl} \right)$$

$$W = \int_{a}^{b} -\vec{F}_{E} \cdot \vec{dl} = \int_{a}^{b} -\vec{q} \vec{E} \cdot \vec{dl} \qquad = \vec{q} \left(-\int_{a}^{b} \vec{E} \cdot \vec{dl} \right)$$

$$W = \vec{q} \left(-\int_{a}^{b} \vec{E} \cdot \vec{dl} \right)$$

$$W = \mathbf{q} \left(-\int_{a}^{b} -\nabla \mathbf{V} \cdot \overrightarrow{dl} \right)$$

$$\nabla V \cdot \hat{l} = \frac{dV}{dl}$$

$$W = q \left(+ \int_{a}^{b} \nabla V \cdot \hat{l} dl \right) = q \left(+ \int_{a}^{b} \frac{dV}{dl} dl \right)$$

$$W = q\left(+\int_{a}^{b} dV\right) = q(V(b) - V(a))$$

$$W = \mathbf{q}(\Delta \mathbf{V}) = \mathbf{q}\left(-\int_{a}^{b} \overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{d}} \overrightarrow{\mathbf{l}}\right)$$

$$\Delta V = V(b) - V(a) = -\int_{a}^{b} \overrightarrow{E} \cdot \overrightarrow{dl}$$

 ΔV is the work done to move a unit charge from 'a' to 'b' in the presence of \vec{E}

\vec{E} : Conservative field =>

$$\vec{E}$$
: Conservative field =>
$$-\int_{a}^{b} \vec{E} \cdot \vec{dl}$$
 is path independent
$$\vec{E}$$
: Conservative field =>
$$\oint_{C} \vec{E} \cdot \vec{dl}$$
 = 0

If a reference point, $\boldsymbol{P_0}$ with a reference voltage, $\boldsymbol{V}(\boldsymbol{P_0})$ is defined:

$$V(P) - V(P_0) = -\int_{P_0}^{P} \vec{E} \cdot \vec{dl}$$

$$V(P) - V_{ref} = -\int_{ref.}^{P} \vec{E} \cdot \vec{dl}$$

Absolute reference point: ∞

Absolute Potential: 0

$$V(P) - V(\infty) = V(P) - 0 = V(P) = -\int_{\infty}^{P} \overrightarrow{E} \cdot \overrightarrow{dl}$$

Localized charge at origin

$$\widehat{R} \longrightarrow \widehat{R}_{\infty} \quad \text{It creates } V(P) \text{ at } P$$

$$V(P) = -\int_{\infty}^{R} \overrightarrow{E} \cdot 1. dR. \widehat{R}$$

$$\widehat{y} \qquad V(P) = -\int_{\infty}^{R} \frac{q}{4\pi\epsilon_{0}} \frac{\widehat{R}}{R^{2}} \cdot 1. dR. \widehat{R}$$

$$V(P) = -\int_{\infty}^{R} \frac{q}{4\pi\epsilon_0} \frac{dR}{R^2} = \frac{q}{4\pi\epsilon_0} \frac{1}{R} \Big|_{\infty}^{R}$$

$$V(P) = \frac{q}{4\pi\epsilon_0} \Big[\frac{1}{R} - \frac{1}{\infty} \Big]$$

$$V(P) = \frac{q}{4\pi\epsilon_0 R} \text{ (Volts)}$$