
 

Boundary Conditions for electrostatic fields 

𝛁 × 𝑬⃗⃗ = 0⃗   

∫ 𝛁 × 𝑬⃗⃗ • 𝒅𝑺⃗⃗⃗⃗  ⃗ = ∮ 𝑬⃗⃗ •

𝑪

𝒅𝒍⃗⃗⃗⃗ = 𝟎

𝑺

 

 

 

 

∮ 𝑬⃗⃗ •

𝑪

𝒅𝒍⃗⃗⃗⃗ = ∑ ∫ 𝑬⃗⃗ • 𝒅𝒍⃗⃗⃗⃗ 

𝑪𝒊

𝟒

𝒊=𝟏

 

 

∮ 𝑬⃗⃗ •

𝑪

𝒅𝒍⃗⃗⃗⃗ = ∫ 𝑬⃗⃗ • 𝒅𝒍⃗⃗⃗⃗ + ∫ 𝑬⃗⃗ • 𝒅𝒍⃗⃗⃗⃗ +

𝒄

𝒃

∫ 𝑬⃗⃗ • 𝒅𝒍⃗⃗⃗⃗ +
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∫ 𝑬⃗⃗ • 𝒅𝒍⃗⃗⃗⃗ = ∫ 𝑬⃗⃗ • 𝒅𝒍⃗⃗⃗⃗ = 𝟎
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∫ 𝑬⃗⃗ 𝟏 • 𝒅𝒍⃗⃗⃗⃗ +

𝒃

𝒂

∫ 𝑬⃗⃗ 𝟐 • 𝒅𝒍⃗⃗⃗⃗ = 𝟎

𝒅

𝒄

 

 

𝑬𝟏//(−𝑳) + 𝑬𝟐//(−𝑳) = 𝟎  

𝑬𝟏// = 𝑬𝟐//  

Tangential component of 𝑬⃗⃗ 𝟏is equal to tangential component of 𝑬⃗⃗ 𝟐  

  

 

 

 

 

 

 

 

 



Boundary Condition 2  

 

∮ 𝑬⃗⃗ 

𝑺

• 𝒅𝑺⃗⃗⃗⃗⃗⃗ = ∫
𝝆𝒗

𝜺𝟎
𝒅𝑽

𝑽

 

 

∮ 𝑬⃗⃗ 

𝑺

• 𝒅𝑺⃗⃗⃗⃗⃗⃗ =
𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅

𝜺𝟎
 

 

∮ 𝑫⃗⃗ 

𝑺

• 𝒅𝑺⃗⃗⃗⃗⃗⃗ = 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 = 𝝆𝑺𝑺 

 

∮ 𝑫⃗⃗ 

𝑺

• 𝒅𝑺⃗⃗⃗⃗⃗⃗ = ∫ 𝑫⃗⃗ 𝟏 • 𝒅𝑺⃗⃗⃗⃗⃗⃗ 

𝑺𝟏

+ ∫ 𝑫⃗⃗ 𝟐 • 𝒅𝑺⃗⃗⃗⃗⃗⃗ 

𝑺𝟐

+ ∫ 𝑫⃗⃗ 𝟏 • 𝒅𝑺⃗⃗⃗⃗⃗⃗ 

𝑺𝟑

+ ∫ 𝑫⃗⃗ 𝟐 • 𝒅𝑺⃗⃗⃗⃗⃗⃗ 

𝑺𝟒

 

 

∫ 𝑫⃗⃗ 𝟏 • 𝒅𝑺⃗⃗⃗⃗  ⃗

𝑺𝟑

→ 𝟎 

 

∫ 𝑫⃗⃗ 𝟐 • 𝒅𝑺⃗⃗⃗⃗  ⃗

𝑺𝟒

→ 𝟎 

 

∮ 𝑫⃗⃗ 

𝑺

• 𝒅𝑺⃗⃗⃗⃗⃗⃗ = 𝝆𝑺𝑺 = ∫ 𝑫⃗⃗ 𝟏 • 𝒅𝑺⃗⃗⃗⃗⃗⃗ 

𝑺𝟏

+ ∫ 𝑫⃗⃗ 𝟑 • 𝒅𝑺⃗⃗⃗⃗⃗⃗ 

𝑺𝟑

 

 

𝑫𝟏⊥(−𝑺) + 𝑫𝟐⊥(+𝑺) =  𝝆𝑺𝑺 

 

=> 𝑫𝟐⊥ − 𝑫
𝟏⊥

=  𝝆𝑺 
 

=> 𝒏̂𝟏 • (𝑫⃗⃗ 𝟐 − 𝑫⃗⃗ 𝟏) =  𝝆𝑺 
 

=> 𝒏̂𝟐 • (𝑫⃗⃗ 𝟏 − 𝑫⃗⃗ 𝟐) =  𝝆𝑺 
 



CAPACITANCE 

 
 

A set of conductors can store electric charge. The net charge Q=0=qq, but the magnitude of 

charge on each conductor is |q|. 

 

This charge q is proportional to the potential difference between the conductors: 

 

        q C V V V V V

q CV

      


 

 

The constant of proportionality between charge and potential difference is Ccapacitance. 

Unit is Farad (F)  Coulomb/Volt. 
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To set up a potential difference between 2 conductors requires an electric “pump”, such as a 

battery.  

 

 

 

 

A larger capacitance implies that a large charge q is stored for the same potential difference V. 

Capacitance depends only on the geometry of the conductors, not the charge q or voltage V. 

We can see this through examples. 

 

+q q 

 

 

C V 
+ 

 

+q 

q 



Parallel Plate Capacitor 

 

Consider the top view of the 2 plates:  

 

Create a Gaussian surface (box) that extends inside and outside one of the conductor surfaces. 

Gauss’ Law enc
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The electric potential difference between the 2 plates is given by: 
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So for parallel plates: 
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Cylindrical Capacitor (Cable) 

 

Let inner conductor have radius a, and outer radius b. Take Gaussian surface as cylinder 

between conductors (E=0 inside conductors). 
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Spherical Capacitor 

 

Let inner sphere have radius a, and outer radius b. Take Gaussian surface as sphere between 

conductors (E=0 inside conductors). 

 

Gauss’ Law 
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Capacitors in Parallel 

 

 

Consider N capacitors all connected in parallel to the same source of potential difference V.  

Across each capacitor i the charge on one of the plates is: 
i iq CV  

 

The total charge on all the plates with the same electric potential is: 

 

1 1 1

N N N

i i ii i i
Q q CV V C

  
      

 

So we can write the equivalent capacitance Cequiv as: 

 

equiv

equiv 1

N

ii

Q C V

C C





 

 

In other words, the equivalent capacitance of N capacitors in parallel is the sum of the 

individual capacitances.  Considering the example of parallel plate capacitors, adding several 

in parallel is equivalent to extending the area of the plates. Since the capacitance is 

proportional to the area, it increases in direct proportion. 

 

Capacitors in Series 

 

For N capacitors in series, the magnitude of the charge q on each plate must be the same. 

Consider the electric conductor connecting any 2 capacitors, and suppose that a charge +q is 

on the plate of one of the capacitors the conductor is connected to. Since the conductor was 

originally uncharged, a charge –q must exist on the plate of the second capacitor. Now a 

capacitor has the same charge magnitude on each plate, so by inference we can determine that 

the magnitude of charge on each plate in the series of capacitor must be the same. The 



potential difference across any capacitor is given by 
i

i

q
V

C
 . The total potential difference 

must add up to electric potential supplied by the battery or power supply: 
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So the equivalent capacitance of capacitors connected in series is given by: 
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The potential difference across any capacitor can be determined by: 

 

1

1N

j
j

i

i

V
q

C

q
V

C








 

Energy Stored in a Capacitor 

 

Let’s calculate the work required of a battery or power supply to move an infinitesimal charge 

dq  onto the plate of a capacitor already containing a charge q .  This is the same as finding 

the change in the potential energy of the capacitor. Recall that the electric potential difference 

across a device is equal to the potential energy difference per unit charge: 

 

U
V

q


   

 

The potential energy difference is equal to the negative of the work done by the electric field 

to set up the configuration, or in other words equal to the work done by the power supply or 

battery to move the charge (the charge must move against the direction of the electric field): 

 

appW U q V     

 



So the work done to move an infinitesimal charge dq  onto the plate of a capacitor is given 

by: 

 

appdW dq V   

If the capacitor already has a charge q , then 
q

V
C


   

So 
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q
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C


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So to charge up a capacitor initially uncharged to a total charge q will require integrating over 

the above expression: 
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Since q C V   for a  capacitor, the electric potential energy stored in a capacitor can be 

expressed in 2 ways: 

 

 
2

21

2 2

q
U C V

C
     

 

 

This potential energy can be used to perform work if the capacitor is disconnected from the 

power supply and connected to an electrical circuit. For example, a flash bulb on a camera 

works in this way. Using both forms of the relation for the energy in a capacitor, we can see 

which capacitor has a greater energy when two are connected in series or parallel. When two 

capacitors are in series, each has the same charge q on one of the plates. Thus by 
2

2

q
U

C
  , 

the smaller capacitance has the greater energy stored. For two capacitors in parallel, both 

capacitors have the same voltage across the plates. Thus by  
21

2
U C V   , the larger 

capacitance stores the greater energy. 

 



Energy Stored in an Electric Field 

 

Let’s apply the expression for the potential energy to the specific example of a parallel plate 

capacitor with plate area A and plate separation V. The capacitance is given by: 
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d
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The magnitude of the electric field between the plates is given by 
V

E
d

 . So the potential 

energy stored in the capacitor is 
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and per unit volume V=Ad, The energy density is given by 

 

2

0

1

2
u E  

 

This result is more general—it applies to any capacitor. Even more, one can interpret the 

result as saying the potential energy of the capacitor is stored in the electric field of the 

capacitor. The electric field has a reality to it, and contains an energy density given by the 

above expression. The field is able to do work on electric charges by expending this potential 

energy. 

 

 

Boundary Value Problems 

 

We will  spend some time in looking at the mathematical foundations of electrostatics.  For a 

charge distribution defined by a charge density , the electric field in the region is given by    

𝛻 ⋅ 𝐸⃗ = 𝜌/𝜖0, which gives, for the potential 𝜑, the equation which is known as the Poisson’s 

equation, 

𝛻2𝜑 = −
𝜌

𝜖0
 

In particular, in a region of space where there are no sources, we have 



𝛻2𝜑 =  0 

Which is called the Laplace’s equation.  In addition, under static conditions,  the equation  

𝛻 × 𝐸⃗ =  0 

is valid everywhere.  Solutions of Laplace’s equation are known as Harmonic functions. The 

expressions for the Laplacian operator in Cartesian, spherical and cylindrical coordinates are 

given by the following expressions  

 

(It may be noted that we have used the symbol 𝜑 for the potential and a closely similar 

symbol 𝜙 for the azimuthal angle of the spherical coordinate system, which should not cause 

confusion).  

The formal solution of Poisson’s equation has been known to us from our derivation of the 

form of potential using Coulomb’s law. It is easy to check that the expression 

𝜑(𝑟 ) =
1

4𝜋𝜖0
∫

𝜌(𝑟′)⃗⃗ ⃗⃗  

|𝑟 − 𝑟′⃗⃗ |
𝑑3𝑟′

𝐴𝑙𝑙 𝑆𝑝𝑎𝑐𝑒

 

Where we have used the primed variable 𝑟′⃗⃗  to indicate the integrated variable and 𝑟  as the 

position coordinate of the point where the potential is calculated. We will operate both sides 

of the above  equation with 𝛻2. Since 𝛻2 acts on the variable 𝑟′⃗⃗ , we can take it inside the 

integral on the right and make it operate on the function 
𝟏

|𝒓⃗ −𝒓′⃗⃗  ⃗|
 , and get, 

 

𝛻2𝜑(𝑟 ) =
1

4𝜋𝜖0
∫ 𝜌(𝑟′)⃗⃗ ⃗⃗  𝛻2 (

1

|𝑟 − 𝑟′⃗⃗ |
)𝑑3𝑟′

𝐴𝑙𝑙 𝑆𝑝𝑎𝑐𝑒

 

Recall that 𝛻2 (
1

|𝑟 −𝑟′⃗⃗  ⃗|
) = −4𝜋𝛿3(𝑟 − 𝑟′⃗⃗  ⃗), so that the integral on the right is easily computed 

using the property of the delta function to be −
𝜌

𝜖0
. 

 



Uniqueness Theorem : 

 

There may be many solutions to Poisson’s and Laplace’s equations. However, the solutions 

that interest us in Physics are those which satisfy the given boundary conditions. Other than 

the assumed existence of the solutions subject to given boundary conditions, one theorem that 

comes to our help is what is known as the Uniqueness Theorem.  The theorem basically states 

that corresponding to various possible solutions of Laplace’s or Poission’s equation, the 

solution that satisfies the given boundary condition is unique, i.e., no two different solutions 

can satisfy the given equation with specified boundary conditions.  

The great advantage of the theorem lies in the fact that if we obtain a solution by some 

technique or even by intuition, we need not look any further, the solution that we have at hand 

is the only possible solution.  

 

What are these boundary conditions? Consider, for instance, a situation in which we are 

required to find the solution of either of these equations in a region of volume V bounded by a 

surface S.  Within this region, we have, for instance, a set of conductors with surfaces S1, S2, 

… on which we know the values of the potential. In addition, we are given the potential 

function on the surface S itself.  This is an example of boundary condition, known as the 

Dirichlet boundary condition.  

It is also possible that instead of specifying the values of potential on the conductors, we are 

given the electric fields on the surface of the conductors, which as we know, are directed 

normal to the surface of the conductors. This would be yet another example of boundary 

conditions.  Boundary conditions where the normal derivatives of the function to be derived 

are specified on some surface or surfaces are known as the  Neumann boundary condition.  

 



In addition to these two types of boundary conditions, there are other possible boundary 

conditions. For instance in Cauchy boundary condition, the value of both the potential and 

its normal derivative are specified. There could be mixed boundary conditions in which 

different types of boundary conditions may be specified on different parts of the boundary. 

 

Uniqueness theorem applies to those cases where there is only one type of boundary 

condition, viz. either Dirichlet or Neumann boundary condition. 

 

To prove the uniqueness theorem, let us assume that contrary to the assertion made in the 

theorem, there exist two solutions 𝜑1and𝜑2  of  either Poisson’s or Laplace’s equation which 

satisfy the same set of boundary conditions on surfaces S1, S2, … and the boundary S.  The 

conditions, as stated above, may be either of Dirichlet 

type or Neumann type : 

 

 𝜑1|𝑆1
= 𝜑2|𝑆1

, 𝜑1|𝑆2
= 𝜑2|2, …𝜑1|𝑆 = 𝜑2|𝑆 

                     OR 

𝜕𝜑1

𝜕𝑛
|
𝑆1

=
𝜕𝜑2

𝜕𝑛
|
𝑆1

,
𝜕𝜑1

𝜕𝑛
|
𝑆2

=
𝜕𝜑2

𝜕𝑛
|
𝑆2

, … ,
𝜕𝜑1

𝜕𝑛
|
𝑆

=
𝜕𝜑2

𝜕𝑛
|
𝑆

 

 

Let us define a new function 𝜑 = 𝜑1 − 𝜑2. In view of the fact that 𝜑1and𝜑2  satisfy the 

same boundary conditions, the boundary condition satisfied by 𝜑 are 𝜑|𝑆1
= 𝜑|𝑆2

= ⋯ =

𝜑|𝑆 = 0 (Dirichlet) OR 
𝜕𝜑

𝜕𝑛
|
𝑆1

=
𝜕𝜑

𝜕𝑛
|
𝑆2

= …
𝜕𝜑

𝜕𝑛
|
𝑆

= 0 (Neumann).  

Further, whether 𝜑1and𝜑2 satisfy Poisson’s or Laplace’s equation, their difference 𝜑 = 𝜑1 −

𝜑2 satisfies Laplace’s equation. 



 

In order to prove the Uniqueness theorem we will use  Green’s First Identity, derived in 

Module 1, which states that for two arbitrary scalar fields  𝜙 and 𝜓, the following identity 

holds, 

∫(𝜙𝛻2𝜓 +  𝛻𝜙 ⋅ 𝛻𝜓)𝑑3𝑟 = ∮ 𝜙
𝜕𝜓

𝜕𝑛𝑆𝑉

𝑑𝑆 

 

where S is the boundary defining the volume V. We choose 𝜙 = 𝜓 = 𝜑, to get, 

∫(𝜑𝛻2𝜑 + |𝛻𝜑|
𝑉

2

)𝑑3𝑟 =  ∮ 𝜑
𝜕𝜑

𝜕𝑛𝑆

𝑑𝑆 

Since on the surface , either the Dirichlet or the Neumann boundary condition is valid, the 

right hand side of the above is zero everywhere. (Note that the surface consists of 𝑆 + 𝑆1 +

𝑆2 + ⋯, with the direction of normal being outward on S and inward on the conductor 

surfaces enclosed). 

Since 𝜑 satisfies Laplace’s equation,  we are then left with ∫ |𝛻𝜑|
𝑉

2
𝑑3𝑟 = 0.  The integrand, 

being a square of a field is positive everywhere in the volume and its integral can be zero only 

if the integral itself is identically zero. Thus we have, 𝛻𝜑 = 0 , which leads to𝜑 = constant 

everywhere on the volume.  If Dirichlet boundary condition is satisfied, then 𝜑 = 0 on the 

surface and therefore, it is zero everywhere in the volume giving,     𝜑1 = 𝜑2. If, on the other 

hand, Neumann boundary condition is satisfied, we must have 
𝜕𝜑

𝜕𝑛
= 0, i.e. 𝜑 = 𝜑1 − 𝜑2 =

constant everywhere. Since the constant can be chosen arbitrarily, we take the constant to be 

zero and get 𝜑1 = 𝜑2. 

 

 

 



Example 1 : Parallel Plate Capacitor : 

 

Consider a parallel plate capacitor with a plate separation of d between the plates. The lower 

plate is grounded while the upper plate is maintained at a constant potential 𝜑0.  Between the 

two plates there are no sources and hence Laplace’s equation is valid in this region. Since the 

plates are assumed infinite in the x, y directions, the only variation is with respect to the z 

direction and we have, 

 

 𝛻2𝜑 ≡
𝜕2𝜑

𝜕𝑧2
= 0 

  The solution of this equation is 

straightforward, and we get, 

𝜑(𝑧) = 𝐴𝑧 + 𝐵 

where A and B are constants. Substituting the 

boundary conditions at z=0 and at z=d, 

𝜑(𝑧 = 0) = 0 = 𝐵 

𝜑(𝑧 = 𝑑) = 𝜑0 = 𝐴𝑑 

which gives,  𝐴 =
𝜑0

𝑑
, 𝐵 = 0 

Substituting these, we get 

𝜑(𝑧) =
𝜑0

𝑑
𝑧 

The electric field in the region is given by 𝐸⃗ = −𝛻𝜑 = −𝑘̂
𝜕𝜑

𝜕𝑧
= −

𝜑0

𝑑
𝑘̂. This shows that the 

electric field between the plates is constant and is directed from the upper plate toward the 

lower plate. The upper plate gets positively charged and the lower plate is negatively charged. 

We can find out the charge densities on the plates by taking the normal component of the 

electric field. For instance on the upper plate, the direction of normal being in the negative z 



direction, 𝑛̂ = −𝑘̂, we get, 

𝜎 = 𝜖0𝐸𝑛 = +
𝜑0

𝑑
𝜖0 

Likewise, the normal to the lower plate being in the positive z direction, the charge density on 

that plate is equal and opposite. If we multiply the charge density by the area of the plate A, 

we get (area is taken to be large so that the edge effects are neglected), 

𝑄 = 𝐴𝜎 = 𝐴
𝜑0

𝑑
𝜖0 

to be the charge on the upper plate. The lower plate has equal but opposite charge. Dividing 

the amount of charge on the positive plate by the potential difference 𝜑0 between the plates, 

we get the capacitance of the parallel plate capacitor to be 𝐶 =
𝜖0𝐴

𝑑
. 

 

Example 2 : Coaxial Cable : 

Consider a coaxial cable of inner radius a and outer radius b. The outer conductor is grounded 

while the inner conductor is maintained at a constant potential 𝜑0. Taking the z axis of the 

cylindrical coordinate system along the axis of the cylinders, we can write down the Laplace’s 

equation in the space between the cylinders as follows : 

 

1

𝜌

𝜕

𝜕𝜌
(𝜌

𝜕𝜑

𝜕𝜌
) +

1

𝜌2

𝜕2𝜑

𝜕𝜃2
+

𝜕2𝜑

𝜕𝑧2
= 0 

 

Here, 𝜌 is the radial distance from the axis and 𝜃 is the 

polar angle.  We assume the cylinders to be of infinite 

extend in the z direction. This implies that there is 

azimuthal symmetry and no variation with respect to z 

as well. The solution can only depend on the radial 



distance 𝜌. Giving, 

1

𝜌

𝜕

𝜕𝜌
(𝜌

𝜕𝜑

𝜕𝜌
) = 0 

The solution of the above equation is easy to obtain, and we get,  

𝜑(𝜌) =  𝐴 ln 𝜌 + 𝐵 

where A and B are two constants which must be determined from the boundary conditions.  

 

𝜑(𝜌 = 𝑏) = 0 gives 𝐴 ln 𝑏 + 𝐵 = 0, so that 𝐵 = −𝐴 ln 𝑏. The boundary condition at 𝜌 = 𝑏 

gives 𝜑0 = 𝐴 ln 𝑎 − 𝐴 ln 𝑏, so that 

𝐴 = 
𝜑0

ln(
𝑎
𝑏
)
 

Substituting these in the expression for the potential, we get  the potential in the region 

between the cylinders to be given by  

𝜑(𝜌) = 𝜑0

ln(
𝜌
𝑏
)

ln (
𝑎
𝑏
)
 

The electric field in the region is given by the negative gradient of the potential which is 

simply the derivative with respect to 𝜌, 

𝐸⃗ = −𝛻𝜑 = −𝜌̂
𝜕

𝜕𝜌
𝜑(𝜌) 

= −𝜌̂
𝜑0

ln(
𝑎
𝑏
)

1

𝜌
 

Since ln (
𝑎

𝑏
) < 0, the direction of the electric field is outward from the inner conductor, which 

gets positively charged.  The charge density of the inner conductor is given by  

𝜎 =  𝜖0𝐸𝑛 = +𝜑0𝜖0

1

𝑎 ln(
𝑏
𝑎)

 

where we have taken care of the minus sign by inverting the argument of log.  



Note that the expression for the charge density on the outer plate will not be identical because 

of the fact that the radii of the two cylinders are different.  The total charge per unit length on 

the inner conductor is given by  

𝑄 = 𝜑0𝜖0

2𝜋𝑎

𝑎 ln(
𝑏
𝑎)

=
2𝜋𝜑0𝜖0

ln(
𝑏
𝑎)

 

The magnitude of the charge per unit length on the outer conductor can be seen to be the 

same. The capacitance per unit length is thus given by 

 

𝐶 =
2𝜋𝜖0

ln(
𝑏
𝑎)

 

 

Example 3 : Spherical Capacitor: 

Consider a spherical capacitor with the inner conductor having a radius a and the outer 

conductor a radius b.  The outer conductor is grounded and the inner conductor is maintained 

at a constant potential 𝜑0. Because of spherical symmetry, the potential can only depend on 

the radial distance r. The radial part of Laplace’s equation, which is valid in the space 

between the conductors is given by 

1

𝑟2

𝑑

𝑑𝑟
(𝑟2

𝑑𝜑

𝑑𝑟
) = 0 

This is a differential equation in a single variable, and the solution can be easily obtained as  

𝜑(𝑟) = −
𝐴

𝑟
+ 𝐵 

where A and B are constants.  

 

Inserting the boundary conditions,  

𝜑(𝑟 = 𝑏) = 0 



gives 𝐵 =
𝐴

𝑏
. The other boundary condition 𝜑(𝑟 = 𝑎) = 𝜑0  gives 

𝜑0 = −
𝐴

𝑎
+

𝐴

𝑏
 

𝐴 = −
𝜑0𝑎𝑏

𝑏 − 𝑎
 

Substituting these into the solution, we have, 

 

𝜑(𝑟) =
𝜑0𝑎𝑏

𝑏 − 𝑎
(
1

𝑟
−

1

𝑏
) 

 

As before, we find the charge density on the spheres by taking the normal component of the 

electric field. The electric field is given by, 

𝐸⃗ = −
𝑑𝜑

𝑑𝑟
𝑟̂ 

=
𝜑0𝑎𝑏

𝑏 − 𝑎

1

𝑟2
𝑟̂ 

 

The charge density on the inner plate is given by 

𝜎𝑖𝑛 = 𝜖0

𝜑0𝑎𝑏

𝑏 − 𝑎

1

𝑎2
 

The total charge on the inner sphere is 

𝑄 =
4𝜋𝜖0𝜑0𝑎𝑏

𝑏 − 𝑎
 

It can be checked that the outer sphere has equal and opposite negative charge. The 

capacitance is given by 

𝐶 =
4𝜋𝜖0𝑎𝑏

𝑏 − 𝑎
 

The capacitance of a single spherical conductor is obtained by taking the outer sphere to 

infinity, i.e., 𝑏 → ∞, which gives the capacitance for a single conductor  to be 4𝜋𝜖0𝑎. This 


