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MAGNETOSTATIC FIELDS 

Static electric fields are characterized by 𝑬⃗⃗  or 𝑫⃗⃗ . Static magnetic fields, are characterized 

by 𝑯⃗⃗⃗  or 𝑩⃗⃗ . There are similarities and dissimilarities between electric and magnetic fields.  

As 𝑬⃗⃗  and 𝑫⃗⃗  are related according to 𝑫⃗⃗  = 𝐸⃗  for linear material space, 𝑯⃗⃗⃗  and 𝑩⃗⃗  are related 

according to        

 

𝑩 ⃗⃗  ⃗= 𝐻⃗⃗  

 

A definite link between electric and magnetic fields was established by Oersted in 1820. 

An electrostatic field is produced by static or stationary charges. If the charges are 

moving with constant velocity, a static magnetic (or magnetostatic) field is produced. A 

magnetostatic field is produced by a constant current flow (or direct current).  This 

current flow may be due to magnetization currents as in permanent magnets, electron-

beam currents as in vacuum tubes, or conduction currents as in current-carrying wires.  

 

The development of the motors, transformers, microphones, compasses, telephone bell 

ringers, television focusing controls, advertising displays, magnetically levitated high 

speed vehicles, memory stores, magnetic separators, and so on, involve magnetic 

phenomena and play an important role in our everyday life.  

 

There are two major laws governing magnetostatic fields:  

(1) Biot-Savart's law, and 

(2) Ampere's circuit law. 
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Like Coulomb's law, Biot-Savart's law is the general law of magnetostatics. Just as 

Gauss's law is a special case of Coulomb's law, Ampere's law is a special case of Biot-

Savart's law and is easily applied in problems involving symmetrical current distribution. 

 

MAGNETIC FLUX DENSITY 

 

The magnetic flux density B is similar to the electric flux density  D  . As   D = 0E in 

free space, the magnetic flux density B is related to the magnetic field intensity H 

according to 

   B = 0 H       (1.21) 

where, 0 is a constant known as the permeability of free space. The constant is in 

henrys/meter (H/m) and has the value of 

 

   0 = 4 x 10
-7

 H/m     (1.22) 

 

The precise definition of the magnetic field B, in terms of the magnetic force, can be 

discussed later. 

 

 

 
 

Figure 1.8: Magnetic flux lines due to a straight wire with current coming out of the page 
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The magnetic flux through a surface S is given by 

 

 
S
dSB         (1.23) 

 

Where the magnetic flux  is in webers (Wb) and the magnetic flux density is a 

webers/square meter (Wb/m
2
) or teslas. 

 

An isolated magnetic charge does not exit.  

 

Total flux through a closed surface in a magnetic field must be zero;  

that is, 

  0 dSB         (1.24) 

 

This equation is referred to as the law of conservation of magnetic flux or Gauss'’s law 

for magnetostatic fields just as  D. dS = Q is Gauss's law for electrostatic fields.  

Although the magnetostatic field is not conservative, magnetic flux is conserved. 

 

By applying the divergence theorem to eq. (1.24), we obtain 

 

  0 S
v

dvBdSB  

Or 

     . B = 0        (1.25) 
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This equation is the fourth Maxwell's equation to be derived.  Equation (1.24) or (1.25) 

shows that magnetostatic fields have no sources or sinks.  Equation (1.25) suggests that 

magnetic field lines are always continuous. 

 

TABLE 1.2: Maxwell's Equations for Static EM Fields 
 

Differential (or 

Point) Form 

Integral Form Remarks 

 . D = v  
S

v

vdvdSD   
Gauss's law 

 . B = 0  
S
dSB 0  Nonexistence of magnetic monopole 

 x E = 0  
L
dlE 0  Conservativeness of electrostatic field 

 x H = J   
L

s

dSJdlH  
Ampere's law 

The Table 1.2 gives the information related to Maxwell's Equations for Static 

Electromagnetic Fields. 

 

AMPERE'S CIRCUIT LAW 

 

Ampere's circuit law states that the line integral of the tangential components of H 

around a closed path is the same as the net current Ienc enclosed by the path 

 

In other words, the circulation of H equals Ienc ; that is, 

 

  encIdlH       

 (1.16) 
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Ampere's law is similar to Gauss's law and it is easily applied to determine H when the 

current distribution is symmetrical.  It should be noted that eq. (1.16) always holds 

whether the current distribution is symmetrical or not but we can only use the equation to 

determine H when symmetrical current distribution exists.  Ampere's law is a special case 

of Biot-Savart's law; the former may be derived from the latter. 

 

By applying Stoke's theorem to the left-hand side of eq. (1.16), we obtain 

 

 
SL

enc dSHdlHI )(       (1.17) 

But 

 
S

enc dSJI        

 (1.18) 

 

Comparing the surface integrals in eqs. (7.17) and (7.18) clearly reveals that 

 

  x H = J        (1.19) 

 

This is the third Maxwell's equation to be derived; it is essentially Ampere's law in 

differential (or point) form whereas eq. (1.16) is the integral form.  From eq. (1.19), we 

should observe that  X H = J  0; that is, magnetostatic field is not conservative. 

 

APPLICATIONS OF AMPERE'S LAW 

Infinite Line Current 
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Consider an infinitely long filamentary current I along the z-axis as in Figure 1. 7. To 

determine H at an observation point P, we allow a closed path pass through P. This path 

on, which Ampere's law is to be applied, is known as an Amperian path (analogous to the 

term Gaussian surface).  We choose a concentric circle as the Amperian path in view of 

eq. (1.14), which shows that H is constant provided p is constant.  Since this path 

encloses the whole current I, according to Ampere's law 

 

    2HdHadaHI  

 

 

 

Figure 1.7: Ampere's law applied to an infinite filamentary, line current. 

 

Or 

  

aH

2

1
         (1.20) 

As expected from eq. (1.14). 
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Fundamental Postulates of Magnetostatics 

We know that for a magnetostatic field,  x B = 0 as stated in eq. (1.25). In order to 

satisfy eqs. (1.25) and (1.27) simultaneously, we can define the vector magnetic potential 

A (in Wb/m) such that 

 

   B =  x A        (1.31) 

 

Just as we defined 

 

 r

dQ
V

04
        (1.32) 

 

We can define  

 

 L R

dlI
A





4

0
 for line current    (1.33) 

 

 

   S R

dSK
A





4

0
 for surface current     (1.34) 

 

 

 v R

dvJ
A





4

0
  for volume current    (1.35) 

 

 

Illustration 1: Given the magnetic vector potential A = -
2
/4 az Wb/m, calculate the total 

magnetic flux crossing the surface  = /2, 1    2m, 0  z  5m. 
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Solution: 

 

   



adzddSaa
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  = 3.75 Wb 

 

Illustration 2: 

 

Identify the configuration in figure 1.9 that is not a correct representation of I and H. 

 

 

 

Figure 1.9: Different I and H representations (related to Illustration 2) 

 

Solution: 

Figure 1.9 (c) is not a correct representation. The direction of H field should have been 

outwards for the given I direction. 

 

 


