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MAGNETIC FORCES, MATERIALS AND DEVICES 

 

Force on a Charged Particle 

 

According to earlier information, the electric force Fe, on a stationary or moving electric 

charge Q in an electric field is given by Coulornb's experimental law and is related to the 

electric field intensity E as 

 

Fe = QE        (2.1) 

 

This shows that if Q is Positive, Fe and E have the same direction. 

 

A magnetic field can exert force only on a moving charge. From experiments, it is found 

that the magnetic force Fm experienced by a charge Q moving with a velocity u in a 

magnetic field B is  

 

Fm = Qu x B         (2.2) 

 

This clearly shows that Fm is perpendicular to both u and B. 

 

From eqs. (2.1) and (2.2), a comparison between the electric force Fe and the magnetic 

force Fm can be made. Fe is independent of the velocity of the charge and can perform 

work on the charge and change its kinetic energy. Unlike Fe, Fm depends on the 

charge velocity and is normal to it. Fm cannot perform work because it is at right angles 

to the direction of motion, of the charge (Fm.dl = 0); it does not cause an increase in 
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kinetic energy of the charge. The magnitude of Fm is generally small compared to Fe 

except at high velocities. 

 

For a moving charge Q in the Presence of both electric and magnetic fields, the total 

force on the charge is given by 

F = Fe + Fm   

or 

 

F = Q (E + u x B)         (2.3) 

 

This is known as the Lorentz force equation. It relates mechanical force to electrical 

force.  If the mass of the charged Particle moving in E and B fields is m, by Newton's 

second law of motion. 

 

 BuEQ
dt

du
mF         (2.4) 

 

The solution to this equation is important in determining the motion of charged particles 

in E and B fields.  We should bear in mind that in such fields, energy transfer can be only 

by means of the electric field. A summary on the force exerted on a charged particle is 

given in table 2.1. 

 

TABLE 2.1: Force on a Charged Particle 

 

State of Particle E Field B Field 
Combined E and B 

Fields 

Stationary QE - QE 
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Moving QE Qu x B Q(E + u x B) 

 

 

The magnetic field B is defined as the force per unit current element 

 

Alternatively, B may be defined from eq. (2.2) as the vector which satisfies Fm / q = u x B 

just as we defined electric field E as the force per unit charge, Fe / q. 

 

Force between Two Current Elements 

 

Let us now consider the force between two elements I1 dl1 and I2 dl2.  According to Biot-

Savart's law, both current elements produce magnetic fields.  So we may find the force 

d(dF1) on element I1 dl1 due to the field dB2 produced by element I2 dl2 as shown in 

Figure 2.1.  

 

As per equation  

 

  dF = I dl x B2 

 

d(dF1) = I1 dl1 x dB2                                      (2.5) 

 

But from Biot-Savart's law, 
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Hence, 
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Figure 2.1: Force between two current loops. 

This equation is essentially the law of force between two current elements and is 

analogous to Coulomb's law, which expresses the force between two stationary charges.  

From eq. (2.7), we obtain the total force F1 on current loop 1 due to current loop 2 shown 

Figure 2.1 as  
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Although this equation appears complicated, we should remember that it is based on 

 eq. (2.5). It is eq. (8. 10) that is of fundamental importance.   

 

The force F2 on loop 2 due to the magnetic field B1 from loop 1 is obtained from eq. (2.8) 

by interchanging subscripts 1 and 2. It can be shown that F2 = - F1; thus F1 and F2 obey 

Newton's third law that action and reaction are equal and opposite. It is worthwhile to 
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mention that eq. (2.8) was experimentally established by Qersted and Ampete; Biot and 

Savart (Ampere's colleagues) actually based their law on it. 

 

MAGNETIC TORQUE AND MOMENT 

 

Now that we have considered the force on a current loop in a magnetic field, we can 

determine the torque on it.  The concept of a current loop experiencing a torque in a 

magnetic field is of paramount importance in understanding the behavior of orbiting 

charged particles, d.c. motors, and generators.  If the loop is placed parallel to a magnetic 

field, it experiences a force that tends to rotate it. 

 

The torque T (or mechanical moment of force) on the loop is the, vector product of the 

force F and the moment arm r. 

 

That is, 

 

T = r x F         (2.9) 

 

and its units are Newton-meters. 

 

Let us apply this to a rectangular loop of length l and width w placed in a uniform 

magnetic field B as shown in Figure 8.5(a). From this figure, we notice that dl is parallel 

to B along sides 12 and 34 of the loop and no force is exerted on those sides.  Thus 
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Figure 2.2: Rectangular planar loop in a uniform magnetic field. 

 

or 

 

F= F0 – F0 = 0                                      (2.10) 

 

Where, |F0| = I Bl because B is uniform.  Thus, no force is exerted on the loop as a 

whole.  However, F0 and –F0 act at different points on the loop, thereby creating a 

couple.  If the normal to the plane of the loop makes an angle  with B, as shown in the 

cross-sectional view of Figure 2.2(b), the torque on the loop is 

 

|T| = |F0| w sin  

or 

   T = B I l w sin       (2.11) 
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But lw = S, the area of the loop. Hence, 

 

T = BIS sin       (2.12) 

 

We define the quantity 

 

m = I S an       (2.13) 

 

as the magnetic dipole moment (in A/M
2
) of the loop.  In eq. (2.13), an is a unit normal 

vector to the plane of the loop and its direction is determined by the right-hand rule: 

fingers in the direction of current Hand thumb along an. 

 

The magnetic dipole moment is the product of current and area of the loop; its reaction is 

normal to the loop. 

 

Introducing eq. (2.13) in eq. (2.12), we obtain 

 

T = m x B        (2.14) 
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3.0 STOKE'S THEOREM 

 

Stoke's Theorem relates a line integral to the surface integral and vice-versa, that is 

 

  
C

S

dSHdLH )(       (3.1) 

 

FORCE ON A MOVING CHARGE DUE TO ELECTRIC AND MAGNETIC 

FIELDS 

 

If there is a charge or a moving charge, Q in an electric field, E, there exists a force on 

the charge. This force is given by 

  

  FE = QE        (3.2) 

 

If a charge, Q moving with a velocity, V is placed in a magnetic field, B (=H), then 

there exists a force on the charge (Fig. 3.1). This force is given by 

 

  FH = Q(V x B)       (3.3) 

 

  B = magnetic flux density, (wb/m
2
) 

 

  V = velocity of the charge, m/s 
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Fig. 3.1: Direction of field, velocity and force 

 

If the charge, Q is placed in both electric and magnetic fields, then the force on the 

charge is 

 

  F =Q (E + V x B)       (3.4) 

 

 This equation is known as Lorentz force equation. 

 

Problem 1: A charge of 12 C has velocity of 5ax + 2ay - 3az m/s. Determine F on the 

charge in the field of (a) E=18ax,+5ay +10az V/m 

(b) B = 4ax + 4ay + 3az wb/m
2
.  

 

Solution: 

(a) The force, F on the charge, Q due to E is 

 

  F = QE = 12 (18ax + 5ay + 10az)  
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  = 216ax + 60ay + 120az 

 

or, F=Q |E|= 222 1051812   

 

F = 254.27 N 

 

(b) The force F on the charge due to B is 

 

F = Q[V x B) 

 

Here V = 5ax + 2ay - 3az m/s  

 

  B = 4 ax + 4 ay + 3 az wb / m
2
  

 

F = 12 [18ax - 27ay + 12az] 

 

or, F= )144729324(12   

 

F = 415.17 N 

 

FORCE ON A CURRENT ELEMENT IN A MAGNETIC FIELD 

 

The force on a current element when placed in a magnetic field, B is 
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F = IL x B        (3.5) 

or, 

  F = I L B Sin   Newton      (3.6) 

 

where  is the angle between the direction of the current element and the direction of 

magnetic flux density 

 

B = magnetic flux density, wb/m
2
 

 

IL = current element, Amp-m 

Proof: Consider a differential charge, dQ to be moving with a velocity, V in a magnetic 

field, H = (B/). Then the differential force on the charge is given by 

 

dF = dQ (V x B)       (3.7) 

 

But 

  dQ =  d 

 

  dF =  d (V x B) 

 

  = ( V x B) d 

 

But   V = J 
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  dF = J d x B 

 

Jd is nothing but IdL, 

 

dF =IdL x B 

 

or,  F = IL x B, Newton      (3.8) 

 

Problem 2:  A current element 4 cm long is along y-axis with a current of 10 mA 

flowing in y-direction.  Determine the force on the current element due to the magnetic 

field if the magnetic field H = (5ax/) A/m. 

 

Solution: 

 

The force on a current element under the influence of magnetic field is 

  F = IL x B 

 

Here,  IL = 10 x 10
-3

 x 0.04ay 

 

   = 4 x l0
-4 

ay 

 

   H = (5ax/) A/m 
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   B = 5ax wb/m
2
 

 

F = 4 x l0
-4

 ay x 5ax 

 

or      F = (0.4ay x 5ax) x 10
-3

 

 

F = -2.0az mN 

 

 

FORCE AND TORQUE ON A LOOP OR COIL 

 

Consider Fig. 3.5 in which a rectangular loop is placed under a uniform magnetic flux 

density, B. 

 

 

 

Fig. 3.5: Rectangular conductor loop in x-z plane 
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From Fig. 3.5, the force on QR due to B is 

 

F1 =IL x B =-ILaz x Bax      (3.25) 

 

F1 = -ILBay        (3.26) 

 

that is, the force, F1 on QR moves it downwards. Now the force on PS is 

 

F2 = IL x B = -ILaz x Bax      (3.27) 

F2 = - ILBay        (3.28) 

 

Force, F2 on PS moves it upwards. It may be noted that the sides PQ and 

SR will not experience force as they are parallel to the field, B. 

 

The forces on QR and PS exert a torque. This torque tends to rotate the coil about its axis. 

 

The torque, T is nothing but a mechanical moment of force. The torque on the loop is 

defined as the vector product of moment arm and force, 

 

that is, 

T  r x F, N-m       (3.29) 

 

where        r = moment arm 

  F = force 
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Applying this definition to the loop considered above, the expression for 

torque is given by 

 

  T = r1 x F1 + r2 x F2      (3.30) 
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= -BILwaz 

  

or,             T = -BISaz        (3.32)  

 

where S = wL = area of the loop 

 

The torque in terms of magnetic dipole moment, m is 

 

T = m x B, N-m       (3.34) 

 

where          m = I l w ay 

 

= I S ay 

 

Problem 5:  
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A rectangular coil is placed in a field of B = (2ax + ay) wb/m
2
. The coil is in y-z plane 

and has dimensions of 2 m x 2 m. It carries a current of 1 A. Find the torque about the z-

axis. 

Solution:   

 

m=IS an = 1 x 4ax 

  

  T = m x B = 4ax x (2ax + ay) 

 

  T = 4az, N-m 

 

 

 

 

 

 
 


