INDEPENDENCE

If

$$
P(A \mid B)=P(A)
$$

then it is said that A and B are independent events.
By using $P(A \mid B)=P(A \cap B) / P(B)$, independence can be given as

$$
P(A \cap B)=P(A) P(B)
$$

Symmetric property:

If A is independent of B, then B is independent of A, Therefore it is said that A and B are independent events.

INDEPENDENCE

easy to understand intuitively, but it is not easily visualized.
Note that two disjoint events A and B with $P(A)>0$ and $P(B)>0$ cannot be independent, $P(A \cap B)=0$

Example 1.19 (textbook) Experiment: two successive rolls of a 4 -sided die, equally likely.

Are the events
$A=\{1$ st roll is a 1$\}, \quad B=\{$ sum of the two rolls is a 5$\}$ independent?

$$
P(A \cap B)=P(\text { the result of the two roll is }(1,4))=\frac{1}{16}
$$

INDEPENDENCE

Example 1.19 (textbook)-continued

$$
\begin{aligned}
& P(A)=\frac{\text { number of elements of } A}{\text { total number of possible outcomes }}=\frac{4}{16} \\
& P(B)=\frac{\text { number of elements of } B}{\text { total number of possible outcomes }}=\frac{4}{16},
\end{aligned}
$$

$P(A \cap B)=P(A) P(A)$ and the events A and B are independent.

Conditional Independence

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

Example 1.20 (textbook) two independent fair coin tosses, equally likely
$H_{1}=\{1$ st toss is a head $\}, \quad H_{2}=\{2$ nd toss is a head $\}$,
$D=\{$ the two tosses have different results $\}$
H_{1} and H_{2} are unconditionally independent. However,

$$
\begin{gathered}
P\left(H_{1} \mid D\right)=\frac{1}{2}, \quad P\left(H_{2} \mid D\right)=\frac{1}{2}, \quad P\left(H_{1} \cap H_{2} \mid D\right)=0, \\
\text { universe: }\{\mathrm{HT}, \mathrm{TH}\} \\
P\left(H_{1} \cap H_{2} \mid D\right) \neq P\left(H_{1} \mid D\right) P\left(H_{2} \mid D\right)
\end{gathered}
$$

H_{1}, H_{2} are not conditionally independent.

Independence of a Collection of Events

Events: A1, A2, and A3
conditions for independence:

$$
\begin{aligned}
& P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2}\right), \\
& P\left(A_{1} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{3}\right), \\
& P\left(A_{2} \cap A_{3}\right)=P\left(A_{2}\right) P\left(A_{3}\right), \\
& P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right) .
\end{aligned}
$$

Examples 1.22 and 1.23 (textbook, homework).

Independent Trials and the Binomial Probabilities

Independent Bernoulli trials:

Independent Trials: independent but identical stages
Bernoulli Trials: only two possible results,

Example (textbook p.41-43):
Experiment: n independent tosses of a biased coin,
The probability of "heads" : p
The probability of "tails" : 1-p.
Events $A_{1}, A_{2}, \ldots, A_{n}$ are independent,

$$
A_{i}=\{i t h \text { toss is a head }\}
$$

Example (textbook p.41-43):

Textbook: D. P. Bertsekas, J. N. Tsitsiklis, "Introduction to Probability", 2nd Ed., Athena Science 2008.

Independent Trials and Binomial Probabilities

$$
\mathrm{P}(" k \text { heads in any particular 3-long sequence" })=p^{k}(1-p)^{3-k}
$$

Generalization for n tosses:

$$
\mathrm{P}(\text { " } k \text { heads in any particular } n \text {-long sequence" })=p^{k}(1-p)^{n-k}
$$

The probability

$$
p(k)=\mathrm{P}(\text { " } k \text { heads in an } n \text {-toss sequence" })
$$

Independent Trials and Binomial Probabilities

$$
p(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \rightarrow \text { Binomial Probability Law }
$$

$\binom{n}{k}:$ number of distinct n-toss sequences contain k heads. (read as " n choose k")

Independent Trials and Binomial Probabilities

The numbers $\binom{n}{k}$ are known as the binomial coefficients.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}, \quad k=0,1,2, \ldots, n
$$

where for any positive integers i we have

$$
i!=1 \times 2 \times 3 \times \cdots \times i, \quad 0!=1
$$

