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COUNTING 
The calculation of probabilities often involves counting the number of 

outcomes in various events.  

The Counting Principle: based on a divide-and-conquer approach,  
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Counting 
 

The Counting Principle 

 

Consider r stages: 

 

o 1n  possible results for the first stage. 

 

o For each result of the first stage, there are 2n  possible results at the 

second stage. 

 

o Generally, for each results of the first 1i   stage, there are in   possible 

results at the ith stage. 

 

 

o The total number of results: 

 

1 2 rn n n  
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Counting 
 

 

Example 1.26 (textbook). A telephone number: 7-digit sequence, the first 

digit cannot be 0 or 1. How many distinct telephone numbers are there? 

 
68 10 10 8 10      

 

 

Example 1.27 (textbook) How many subsets does the set  1 2, , , ns s s  have?  
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Counting 
 

Permutation: Selection of k objects out of the n objects, paying attention to 

order of the selection.  

 

k-permutations: 

Selecting k of n distinct object 

 

How many different ways are there (order of the selection matters)? 

 

By the Counting Principle, k-permutations  
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Counting 
Example taking two of the four letters A, B, C, and D. 

 

2-permutations: 

AB, BA, AC, CA, AD, DA, BC, CB, BD, DB, CD, DC.  
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Example 1.28 (textbook) The number of words that consist of four distinct 

letters  

 

4-permutations of the 26 letters  

 

 
! 26!

26 25 24 23 358,800
! 22!
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Example 1.29. (textbook) homework 
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Counting 
 

Combination: Selection of k objects out of the n objects, without paying any 

attention to order of the selection 

 

2-permutations of A, B, C, and D  

 

AB, BA, AC, CA, AD, DA, BC, CB, BD, DB, CD, DC.  

 

Combinations of two out four of these letters  

 

AB, AC, AD, BC, BD, CD 

 

The number of possible combinations : 
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Counting 
 

Example 1.30 (textbook). combinations of two out of the four letters 

A,B,C, and D: 

 

 
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Counting 
Partitions: 

 

Nonnegative integers 1 2, , , rn n n  

 

1 2 rn n n n     

 

Partitions of the set into r disjoint subsets. n objects is divided into r disjoint 

groups, there are in  elements of ith group. The number ways for dividing n 

objects into r disjoint groups? 
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Counting 
 

Partitions and Multinomial Coefficients: 

 

o Use the Counting Principle  
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which is equal to 
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Counting 
 

Example 1.33 (textbook). There are 4 graduate and 12 undergraduate 

students in a class. Divide the class into four groups of 4 randomly. What is 

the probability that each group includes a graduate student? 

 

A typical outcome: partitioning the 16 students into four groups of 4.  

 

16 16!

4,4,4,4 4!4!4!4!
SN

 
  
 

  

 

o Distributing four graduate students to the four group, number of 

ways:4! 

o Distributing remaining 12 undergraduate students to the four groups, 

number of ways: 

 

12 12!

3,3,3,3 3!3!3!3!
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Counting 
 

Example 1.33 (textbook) 

 

Total number of elements  
12!

4!
3!3!3!3!
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The probability of the event is 
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