COUNTING

The calculation of probabilities often involves counting the number of outcomes in various events.
The Counting Principle: based on a divide-and-conquer approach,

Counting

The Counting Principle

Consider r stages:

- n_{1} possible results for the first stage.
- For each result of the first stage, there are n_{2} possible results at the second stage.
- Generally, for each results of the first $i-1$ stage, there are n_{i} possible results at the i th stage.
- The total number of results:

$$
n_{1} \times n_{2} \times \cdots \times n_{r}
$$

Counting

Example 1.26 (textbook). A telephone number: 7-digit sequence, the first digit cannot be 0 or 1 . How many distinct telephone numbers are there?

$$
8 \times 10 \times \cdots \times 10=8 \times 10^{6}
$$

Example 1.27 (textbook) How many subsets does the set $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ have?

$$
\underbrace{2 \times 2 \times \cdots \times 2}_{n \text { times }}=2^{n} .
$$

Counting

Permutation: Selection of k objects out of the n objects, paying attention to order of the selection.

k-permutations:

Selecting k of n distinct object
How many different ways are there (order of the selection matters)?
By the Counting Principle, k-permutations
$n(n-1) \cdots(n-k+1)=\frac{n \times(n-1) \times \cdots \times(n-k+1) \times(n-k) \times \cdots \times 2 \times 1}{(n-k) \times \cdots \times 2 \times 1}=\frac{n!}{(n-k)!}$

Counting

Example taking two of the four letters A, B, C, and D.
2-permutations:
$\mathrm{AB}, \mathrm{BA}, \mathrm{AC}, \mathrm{CA}, \mathrm{AD}, \mathrm{DA}, \mathrm{BC}, \mathrm{CB}, \mathrm{BD}, \mathrm{DB}, \mathrm{CD}, \mathrm{DC}$.

$$
\frac{n!}{(n-k)!}=\frac{4!}{2!}=4 \times 3=12
$$

Example 1.28 (textbook) The number of words that consist of four distinct letters

4-permutations of the 26 letters

$$
\frac{n!}{(n-k)!}=\frac{26!}{22!}=26 \times 25 \times 24 \times 23=358,800
$$

Example 1.29. (textbook) homework

Counting

Combination: Selection of k objects out of the n objects, without paying any attention to order of the selection

2-permutations of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D

$$
\mathrm{AB}, \mathrm{BA}, \mathrm{AC}, \mathrm{CA}, \mathrm{AD}, \mathrm{DA}, \mathrm{BC}, \mathrm{CB}, \mathrm{BD}, \mathrm{DB}, \mathrm{CD}, \mathrm{DC} .
$$

Combinations of two out four of these letters

$$
\mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{BC}, \mathrm{BD}, \mathrm{CD}
$$

The number of possible combinations :

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Counting

Example 1.30 (textbook). combinations of two out of the four letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D:

$$
\binom{4}{2}=\frac{4!}{2!(4-2)!}=6
$$

Counting

Partitions:

Nonnegative integers $n_{1}, n_{2}, \ldots, n_{r}$

$$
n_{1}+n_{2}+\ldots+n_{r}=n
$$

Partitions of the set into r disjoint subsets. n objects is divided into r disjoint groups, there are n_{i} elements of i th group. The number ways for dividing \boldsymbol{n} objects into r disjoint groups?

Textbook: D. P. Bertsekas, J. N. Tsitsiklis, "Introduction to Probability", 2nd Ed., Athena Science 2008.

Counting

Partitions and Multinomial Coefficients:

- Use the Counting Principle

$$
\binom{n}{n_{1}} \times\binom{ n-n_{1}}{n_{2}} \times\binom{ n-n_{1}-n_{2}}{n_{3}} \times \cdots \times\binom{ n-n_{1}-n_{2}-\cdots-n_{r-1}}{n_{r}}
$$

which is equal to

$$
\frac{n!}{n_{1}!\left(n-n_{1}\right)!} \times \frac{\left(n-n_{1}\right)!}{n_{2}!\left(n-n_{1}-n_{2}\right)!} \times \cdots \times \frac{\left(n-n_{1}-\cdots-n_{r-1}\right)!}{n_{r}!\left(n-n_{1}-\cdots-n_{r}\right)!}=\frac{n!}{n_{1}!\mathrm{n}_{2}!\cdots \mathrm{n}_{r}!}=\underbrace{\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}}_{\text {Multinomial Coefficient }}
$$

Counting

Example 1.33 (textbook). There are 4 graduate and 12 undergraduate students in a class. Divide the class into four groups of 4 randomly. What is the probability that each group includes a graduate student?

A typical outcome: partitioning the 16 students into four groups of 4 .

$$
N_{S}=\binom{16}{4,4,4,4}=\frac{16!}{4!4!4!4!}
$$

- Distributing four graduate students to the four group, number of ways:4!
- Distributing remaining 12 undergraduate students to the four groups, number of ways:

$$
\binom{12}{3,3,3,3}=\frac{12!}{3!3!3!3!}
$$

Counting

Example 1.33 (textbook)

Total number of elements

$$
N_{A}=4!\times \frac{12!}{3!3!3!3!}
$$

The probability of the event is

$$
P(A)=\frac{N_{A}}{N_{S}}=\frac{4!\times \frac{12!}{3!3!3!3!}}{\frac{16!}{4!4!4!4!}}
$$

