
Solutions

As was stated before, one of the goals in this course is to solve, or find
solutions of differential equations. In the next definition we consider the
concept of a solution of an ordinary differential equation.

Definition 2:

1

Any function 𝜙 defined on an interval 𝐼 and possessing at least 𝑛
derivatives that are continuous on 𝐼, which when substituted into

an 𝑛𝑡ℎ-order ordinary differential equation reduces the equation

to an identity, is said to be a solution of the equation on the

interval.



EXAMPLE 1(Verification of a Solution)

Verify that the indicated function is a solution of the given differential equation on the
interval −∞,∞ .
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3

Note, too, that in Example 1 each differential
equation possesses the constant solution 𝑦 =
0,−∞ < 𝑥 < ∞. A solution of a differential equation
that is identically zero on an interval I is said to be
a trivial solution.



SOLUTION CURVE

The graph of a solution 𝜙 of an ODE is called a solution curve. Since
𝜙 is a differentiable function, it is continuous on its interval I of
definition. Thus there may be a difference between the graph of the
function 𝜙 and the graph of the solution 𝜙. Put another way, the domain
of the function 𝜙 need not be the same as the interval I of definition (or
domain) of the solution 𝜙. Example 2 illustrates the difference.
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EXAMPLE 2(Function versus Solution)

5



EXPLICIT AND IMPLICIT SOLUTIONS
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Definition 3: (Implicit Solution of an ODE)

7

A relation 𝐺(𝑥, 𝑦) = 0 is said to be an implicit solution of an ordinary

differential equation (1) on an interval I, provided that there exists at

least one function 𝜙 that satisfies the relation as well as the

differential equation on I.
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EXAMPLE 3(Verification of an Implicit Solution)



FAMILIES OF SOLUTIONS

The study of differential equations is similar to that of integral calculus. In
some texts a solution 𝜙 is sometimes referred to as an integral of the
equation, and its graph is called an integral curve. When evaluating an
antiderivative or indefinite integral in calculus, we use a single constant 𝑐
of integration.

Analogously, when solving a first-order differential equation 𝐹 𝑥, 𝑦, 𝑦′ =
0, we usually obtain a solution containing a single arbitrary constant or
parameter 𝑐. A solution containing an arbitrary constant represents a set
𝐺 𝑥, 𝑦, 𝑐 = 0 of solutions called a one-parameter family of solutions.

When solving an 𝑛𝑡ℎ-order differential equation 𝐹 𝑥, 𝑦, 𝑦′, . . . , 𝑦 𝑛 = 0,
we seek an n-parameter family of solutions 𝐺 𝑥, 𝑦, 𝑐1, 𝑐2, . . . , 𝑐𝑛 = 0.
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This means that a single differential equation can possess an infinite
number of solutions corresponding to the unlimited number of choices for
the parameter(s).

› A solution of a differential equation that is free of arbitrary parameters is
called a particular solution.

› The set of all solutions of a DE is called general solution.

› Note that the general solution of a DE involves the same number of
parameters with the order of the DE. That is if the DE is 4th order, the
parameters in the general solution should be 4.
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For example, the one-parameter family
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Sometimes a differential equation possesses a solution that is not a
member of a family of solutions of the equation —that is, a solution that
cannot be obtained by specializing any of the parameters in the family of
solutions. Such an extra solution is called a singular solution.

For example, we have seen that

are solutions of the differential equation
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1.2 INITIAL-VALUE PROBLEMS
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Solve questions.
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Existence and Uniqueness

Two fundamental questions arise in considering an initial-
value problem:

› Does a solution of the problem exist?

› If a solution exists, is it unique?
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Example 4 (An IVP Can Have Several Solutions)
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Theorem 1 (Existence of a Unique Solution)
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Example 5 (Revisited Example 4)

We saw in Example 4 that the differential equation

𝑑𝑦

𝑑𝑥
= 𝑥𝑦1/2

possesses at least two solutions whose graphs pass through (0, 0). Inspection of
the functions

𝑓 𝑥, 𝑦 = 𝑥𝑦1/2 𝑎𝑛𝑑
𝜕𝑓

𝜕𝑦
=

𝑥

2𝑦1/2

shows that they are continuous in the upper half-plane defined by 𝑦 > 0. Hence
Theorem 1 enables us to conclude that through any point (𝑥0, 𝑦0), 𝑦0 > 0 in the
upper half-plane there is some interval centered at 𝑥0 on which the given
differential equation has a unique solution.

Thus, for example, even without solving it, we know that there exists some
interval centered at 2 on which the initial-value problem

𝑑𝑦

𝑑𝑥
= 𝑥𝑦1/2, 𝑦 2 = 1

has a unique solution.
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Remark

The conditions in Theorem 1 are sufficient but not necessary. This

means that when 𝑓 (𝑥, 𝑦) and
𝜕𝑓

𝜕𝑦
are continuous on a rectangular region

𝑅, it must always follow that a solution of (2) exists and is unique
whenever (𝑥0, 𝑦0), is a point interior to 𝑅.

However, if the conditions stated in the hypothesis of Theorem 1 do not
hold, then anything could happen:

Problem (2) ,

› may still have a solution and this solution may be unique,

or

› (2) may have several solutions,

or

› it may have no solution at all.
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