## 2. FIRST-ORDER DIFFERENTIAL EQUATIONS

### 2.1 SEPARABLE EQUATIONS

We begin our study of how to solve differential equations with the simplest of all differential equations: first-order equations with separable variables.

Because the method in this section and many techniques for solving differential equations involve integration, you are urged to refresh your memory on important formulas ( $\int d u / u$ ) and techniques (such as integration by parts) by consulting a calculus text.

SOLUTION BY INTEGRATION Consider the first-order differential equation $d y / d x=f(x, y)$. When $f$ does not depend on the variable $y$, that is, $f(x, y)=g(x)$, the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=g(x) \tag{1}
\end{equation*}
$$

can be solved by integration. If $g(x)$ is a continuous function, then integrating both sides of (1) gives $y=\int g(x) d x=G(x)+c$, where $G(x)$ is an antiderivative (indefinite integral) of $g(x)$. For example, if $d y / d x=1+e^{2 x}$, then its solution is $y=\int\left(1+e^{2 x}\right) d x$ or $y=x+\frac{1}{2} e^{2 x}+c$.

Definition 2.1

A first-order differential equation of the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

is said to be separable equations or to have separable variables.

For example, the equations

$$
\frac{d y}{d x}=y^{2} x e^{3 x+4 y} \quad \text { and } \quad \frac{d y}{d x}=y+\sin x
$$

are separable and nonseparable, respectively. In the first equation we can factor $f(x, y)=y^{2} x e^{3 x+4 y}$ as

$$
f(x, y)=y^{2} x e^{3 x+4 y}=\left(x e^{\frac{g x}{3 x}}\right)\left(y^{2} e^{4 y}\right),
$$

but in the second equation there is no way of expressing $y+\sin x$ as a product of a function of $x$ times a function of $y$.

Observe that by dividing by the function $h(y)$, we can write a separable equation $\frac{d y}{d x}=g(x) h(y)$ as

$$
p(y) \frac{d y}{d x}=g(x)
$$

where, for convenience, we have denoted $1 / h(y)$ by $p(y)$.
A one-parameter family of solutions, usually given implicitly, is obtained by integrating both sides of

$$
p(y) d y=g(x) d x
$$

as

$$
\int p(y) d y=\int g(x) d x \quad \text { or } \quad H(y)=G(x)+c
$$

where $H(y)$ and $G(x)$ are antiderivatives of $p(y)=1 / h(y)$ and $g(x)$, respectively.

Informally speaking, one solves separable equations by performing the separation and then integrating each side.
NOTE There is no need to use two constants in the integration of a separable equation, because if we write $H(y)+c_{1}=G(x)+c_{2}$, then the difference $c_{2}-c_{1}$ can be replaced by a single constant $c$.
In many instances throughout the chapters that follow, we will relabel constants in a manner convenient to a given equation.
For example, multiples of constants or combinations of constants can sometimes be replaced by a single constant.

## Solve Questions

### 2.2. LINEAR EQUATIONS

A type of first-order differential equation that occurs frequently in applications is the linear equation. Recall from Section 1.1 that a linear first-order equation is an equation that can be expressed in the form
(1) $a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=b(x)$,
where $a_{1}(x), a_{0}(x)$, and $b(x)$ depend only on the independent variable $x$, not on $y$.

For example, the equation

$$
x^{2} \sin x-(\cos x) y=(\sin x) \frac{d y}{d x}
$$

is linear, because it can be rewritten in the form $\quad(\sin x) \frac{d y}{d x}+(\cos x) y=x^{2} \sin x$. However, the equation

$$
y \frac{d y}{d x}+(\sin x) y^{3}=e^{x}+1
$$

İs not linear.

Now let's find how to solve the linear differential equations.

We can summarize the method for solving linear equations as follows.

## Method for Solving Linear Equations

(a) Write the equation in the standard form

$$
\frac{d y}{d x}+P(x) y=Q(x) .
$$

(b) Calculate the integrating factor $\mu(x)$ by the formula

$$
\mu(x)=\exp \left[\int P(x) d x\right] .
$$

(c) Multiply the equation in standard form by $\mu(x)$ and, recalling that the left-hand side is just $\frac{d}{d x}[\mu(x) y]$, obtain

$$
\begin{aligned}
\underbrace{\mu(x)}_{\frac{d}{d x}\left[\mu(x) \frac{d y}{d x}+P(x) \mu(x) y\right.} & =\mu(x) Q(x), \\
& =\mu(x) Q(x) .
\end{aligned}
$$

(d) Integrate the last equation and solve for $y$ by dividing by $\mu(x)$ to obtain (8).

## Solve Questions

