2. FIRST-ORDER DIFFERENTIAL EQUATIONS

2.1 SEPARABLE EQUATIONS

We begin our study of how to solve differential equations with the simplest of all differential equations: first-order equations with separable variables.

Because the method in this section and many techniques for solving differential equations involve integration, you are urged to refresh your memory on important formulas $(\int du/u)$ and techniques (such as integration by parts) by consulting a calculus text.

PRANTING MATHER

SOLUTION BY INTEGRATION Consider the first-order differential equation dy/dx = f(x, y). When f does not depend on the variable y, that is, f(x, y) = g(x), the differential equation

$$\frac{dy}{dx} = g(x) \tag{1}$$

can be solved by integration. If g(x) is a continuous function, then integrating both sides of (1) gives $y = \int g(x) dx = G(x) + c$, where G(x) is an antiderivative (indefinite integral) of g(x). For example, if $dy/dx = 1 + e^{2x}$, then its solution is $y = \int (1 + e^{2x}) dx$ or $y = x + \frac{1}{2}e^{2x} + c$.

π

Definition 2.1

A first-order differential equation of the form $\frac{dy}{dx} = g(x)h(y)$ is said to be **separable equations** or to have **separable variables**.

π

For example, the equations

$$\frac{dy}{dx} = y^2 x e^{3x+4y}$$
 and $\frac{dy}{dx} = y + \sin x$

are separable and nonseparable, respectively. In the first equation we can factor $f(x, y) = y^2 x e^{3x+4y}$ as

$$f(x, y) = y^2 x e^{3x+4y} = (x e^{3x})(y^2 e^{4y}),$$

but in the second equation there is no way of expressing $y + \sin x$ as a product of a function of x times a function of y.

 π

Observe that by dividing by the function h(y), we can write a separable equation $\frac{dy}{dx} = g(x)h(y)$ as

$$p(y)\frac{dy}{dx} = g(x)$$

where, for convenience, we have denoted 1/h(y) by p(y).

A one-parameter family of solutions, usually given implicitly, is obtained by integrating both sides of

$$p(y)dy = g(x)dx$$

as

$$\int p(y) \, dy = \int g(x) \, dx \quad \text{or} \quad H(y) = G(x) + c,$$

where H(y) and G(x) are antiderivatives of p(y) = 1/h(y) and g(x), respectively.

Informally speaking, one solves separable equations by performing the separation and then integrating each side.

NOTE There is no need to use two constants in the integration of a separable equation, because if we write $H(y) + c_1 = G(x) + c_2$, then the difference $c_2 - c_1$ can be replaced by a single constant c.

In many instances throughout the chapters that follow, we will relabel constants in a manner convenient to a given equation.

For example, multiples of constants or combinations of constants can sometimes be replaced by a single constant.

Solve Questions

2.2. LINEAR EQUATIONS

A type of first-order differential equation that occurs frequently in applications is the linear equation. Recall from Section 1.1 that a linear first-order equation is an equation that can be expressed in the form

(1)
$$a_1(x)\frac{dy}{dx} + a_0(x)y = b(x)$$
,

where $a_1(x)$, $a_0(x)$, and b(x) depend only on the independent variable x, not on y.

For example, the equation

$$x^2 \sin x - (\cos x)y = (\sin x)\frac{dy}{dx}$$

is linear, because it can be rewritten in the form $(\sin x)\frac{dy}{dx} + (\cos x)y = x^2 \sin x$. However, the equation

$$y\frac{dy}{dx} + (\sin x)y^3 = e^x + 1$$

İs not linear.

Dent of MATHER

Now let's find how to solve the linear differential equations .

We can summarize the method for solving linear equations as follows.

Method for Solving Linear Equations

(a) Write the equation in the standard form

$$\frac{dy}{dx} + P(x)y = Q(x) \ .$$

(b) Calculate the integrating factor $\mu(x)$ by the formula

$$\mu(x) = \exp\left[\int P(x)\,dx\right]\,.$$

(c) Multiply the equation in standard form by $\mu(x)$ and, recalling that the left-hand side is just $\frac{d}{dx} [\mu(x)y]$, obtain

$$\underbrace{\mu(x)\frac{dy}{dx} + P(x)\mu(x)y}_{\frac{d}{dx}\left[\mu(x)y\right]} = \mu(x)Q(x) ,$$

$$= \mu(x)Q(x) .$$

(d) Integrate the last equation and solve for y by dividing by $\mu(x)$ to obtain (8).

Solve Questions

