6. HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

INTRODUCTION As a means of motivating the discussion in this section, let us return to first-order differential equations—more specifically, to *homogeneous* linear equations ay' + by = 0, where the coefficients $a \neq 0$ and b are constants. This type of equation can be solved either by separation of variables or with the aid of an integrating factor, but there is another solution method, one that uses only algebra. Before illustrating this alternative method, we make one observation: Solving ay' + by = 0 for y' yields y' = ky, where k is a constant. This observation reveals the nature of the unknown solution y; the only nontrivial elementary function whose derivative is a constant multiple of itself is an exponential function e^{mx} . Now the new solution method: If we substitute $y = e^{mx}$ and $y' = me^{mx}$ into ay' + by = 0, we get

$$ame^{mx} + be^{mx} = 0$$
 or $e^{mx}(am + b) = 0$.

Since e^{mx} is never zero for real values of x, the last equation is satisfied only when m is a solution or root of the first-degree polynomial equation am + b = 0. For this single value of m, $y = e^{mx}$ is a solution of the DE. To illustrate, consider the constant-coefficient equation 2y' + 5y = 0. It is not necessary to go through the differentiation and substitution of $y = e^{mx}$ into the DE; we merely have to form the equation 2m + 5 = 0 and solve it for m. From $m = -\frac{5}{2}$ we conclude that $y = e^{-5x/2}$ is a solution of 2y' + 5y = 0, and its general solution on the interval $(-\infty, \infty)$ is $y = c_1 e^{-5x/2}$.

In this section we will see that the foregoing procedure can produce exponential solutions for homogeneous linear higher-order DEs,

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0, \tag{1}$$

where the coefficients a_i , i = 0, 1, ..., n are real constants and $a_n \neq 0$.

AUXILIARY EQUATION We begin by considering the special case of the second-order equation

$$ay'' + by' + cy = 0, (2)$$

where a, b, and c are constants. If we try to find a solution of the form $y = e^{mx}$, then after substitution of $y' = me^{mx}$ and $y'' = m^2 e^{mx}$, equation (2) becomes

$$am^2e^{mx} + bme^{mx} + ce^{mx} = 0$$
 or $e^{mx}(am^2 + bm + c) = 0$.

As in the introduction we argue that because $e^{mx} \neq 0$ for all x, it is apparent that the only way $y = e^{mx}$ can satisfy the differential equation (2) is when m is chosen as a root of the quadratic equation

$$am^2 + bm + c = 0. ag{3}$$

This last equation is called the **auxiliary equation** of the differential equation (2). Since the two roots of (3) are $m_1 = (-b + \sqrt{b^2 - 4ac})/2a$ and $m_2 = (-b - \sqrt{b^2 - 4ac})/2a$, there will be three forms of the general solution of (2) corresponding to the three cases:

- m_1 and m_2 real and distinct $(b^2 4ac > 0)$,
- m_1 and m_2 real and equal $(b^2 4ac = 0)$, and
- m_1 and m_2 conjugate complex numbers $(b^2 4ac < 0)$.

We discuss each of these cases in turn.

CASE I: DISTINCT REAL ROOTS Under the assumption that the auxiliary equation (3) has two unequal real roots m_1 and m_2 , we find two solutions, $y_1 = e^{m_1 x}$ and $y_2 = e^{m_2 x}$. We see that these functions are linearly independent on $(-\infty, \infty)$ and hence form a fundamental set. It follows that the general solution of (2) on this interval is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}. (4)$$

CASE II: REPEATED REAL ROOTS When $m_1 = m_2$, we necessarily obtain only one exponential solution, $y_1 = e^{m_1 x}$. From the quadratic formula we find that $m_1 = -b/2a$ since the only way to have $m_1 = m_2$ is to have $b^2 - 4ac = 0$. It follows from (5) in Section 4.2 that a second solution of the equation is

$$y_2 = e^{m_1 x} \int \frac{e^{2m_1 x}}{e^{2m_1 x}} dx = e^{m_1 x} \int dx = x e^{m_1 x}.$$
 (5)

In (5) we have used the fact that $-b/a = 2m_1$. The general solution is then

$$y = c_1 e^{m_1 x} + c_2 x e^{m_1 x}. (6)$$

Note: (used to find the other solution in Case-II) Consider the following equation

$$y'' + P(x)y' + Q(x)y = 0,$$
 (1)

If $y_1(x)$ is a known solution of (1) then the second solution is found by the formula

 $y_2 = y_1(x) \int \frac{e^{-\int P(x) dx}}{y_1^2(x)} dx.$

CASE III: CONJUGATE COMPLEX ROOTS If m_1 and m_2 are complex, then we can write $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$, where α and $\beta > 0$ are real and $i^2 = -1$. Formally, there is no difference between this case and Case I, and hence

$$y = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x}.$$

However, in practice we prefer to work with real functions instead of complex exponentials. To this end we use **Euler's formula:**

$$e^{i\theta} = \cos\theta + i\sin\theta,$$

where θ is any real number.* It follows from this formula that

$$e^{i\beta x} = \cos \beta x + i \sin \beta x$$
 and $e^{-i\beta x} = \cos \beta x - i \sin \beta x$, (7)

where we have used $\cos(-\beta x) = \cos \beta x$ and $\sin(-\beta x) = -\sin \beta x$. Note that by first adding and then subtracting the two equations in (7), we obtain, respectively,

$$e^{i\beta x} + e^{-i\beta x} = 2\cos\beta x$$
 and $e^{i\beta x} - e^{-i\beta x} = 2i\sin\beta x$.

Since $y = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x}$ is a solution of (2) for any choice of the constants C_1 and C_2 , the choices $C_1 = C_2 = 1$ and $C_1 = 1$, $C_2 = -1$ give, in turn, two solutions:

$$y_1 = e^{(\alpha + i\beta)x} + e^{(\alpha - i\beta)x} \quad \text{and} \quad y_2 = e^{(\alpha + i\beta)x} - e^{(\alpha - i\beta)x}.$$
 But
$$y_1 = e^{\alpha x}(e^{i\beta x} + e^{-i\beta x}) = 2e^{\alpha x}\cos\beta x$$
 and
$$y_2 = e^{\alpha x}(e^{i\beta x} - e^{-i\beta x}) = 2ie^{\alpha x}\sin\beta x.$$

Hence from Corollary (A) of Theorem 4.1.2 the last two results show that $e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$ are *real* solutions of (2). Moreover, these solutions form a fundamental set on $(-\infty, \infty)$. Consequently, the general solution is

$$y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x). \tag{8}$$

Corollary (A)

A constant multiple $y = c_1 y_1(x)$ of a solution $y_1(x)$ of a homogeneous linear differential equation is also a solution.

EXAMPLE 1 Second-Order DEs

Solve the following differential equations.

(a)
$$2y'' - 5y' - 3y = 0$$
 (b) $y'' - 10y' + 25y = 0$ (c) $y'' + 4y' + 7y = 0$

(b)
$$y'' - 10y' + 25y = 0$$

(c)
$$y'' + 4y' + 7y = 0$$

SOLUTION We give the auxiliary equations, the roots, and the corresponding general solutions.

(a)
$$2m^2 - 5m - 3 = (2m + 1)(m - 3) = 0$$
, $m_1 = -\frac{1}{2}$, $m_2 = 3$

From (4), $y = c_1 e^{-x/2} + c_2 e^{3x}$.

(b)
$$m^2 - 10m + 25 = (m - 5)^2 = 0$$
, $m_1 = m_2 = 5$

From (6), $y = c_1 e^{5x} + c_2 x e^{5x}$.

(c)
$$m^2 + 4m + 7 = 0$$
, $m_1 = -2 + \sqrt{3}i$, $m_2 = -2 - \sqrt{3}i$

From (8) with
$$\alpha = -2$$
, $\beta = \sqrt{3}$, $y = e^{-2x} (c_1 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x)$.

EXAMPLE 2 An Initial-Value Problem

Solve 4y'' + 4y' + 17y = 0, y(0) = -1, y'(0) = 2.

SOLUTION By the quadratic formula we find that the roots of the auxiliary equation $4m^2 + 4m + 17 = 0$ are $m_1 = -\frac{1}{2} + 2i$ and $m_2 = -\frac{1}{2} - 2i$. Thus from (8) we have $y = e^{-x/2}(c_1 \cos 2x + c_2 \sin 2x)$. Applying the condition y(0) = -1, we see from $e^0(c_1 \cos 0 + c_2 \sin 0) = -1$ that $c_1 = -1$. Differentiating $y = e^{-x/2}(-\cos 2x + c_2 \sin 2x)$ and then using y'(0) = 2 gives $2c_2 + \frac{1}{2} = 2$ or $c_2 = \frac{3}{4}$. Hence the solution of the IVP is $y = e^{-x/2}(-\cos 2x + \frac{3}{4}\sin 2x)$. In Figure 4.3.1 we see that the solution is oscillatory, but $y \to 0$ as $x \to \infty$ and $|y| \to \infty$ as $x \to -\infty$.

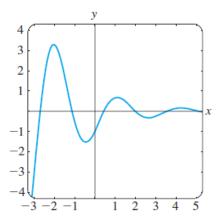


FIGURE 4.3.1 Solution curve of IVP in Example 2

TWO EQUATIONS WORTH KNOWING The two differential equations

$$y'' + k^2y = 0$$
 and $y'' - k^2y = 0$,

where k is real, are important in applied mathematics. For $y'' + k^2y = 0$ the auxiliary equation $m^2 + k^2 = 0$ has imaginary roots $m_1 = ki$ and $m_2 = -ki$. With $\alpha = 0$ and $\beta = k$ in (8) the general solution of the DE is seen to be

$$y = c_1 \cos kx + c_2 \sin kx. \tag{9}$$

On the other hand, the auxiliary equation $m^2 - k^2 = 0$ for $y'' - k^2y = 0$ has distinct real roots $m_1 = k$ and $m_2 = -k$, and so by (4) the general solution of the DE is

$$y = c_1 e^{kx} + c_2 e^{-kx}. (10)$$

Notice that if we choose $c_1 = c_2 = \frac{1}{2}$ and $c_1 = \frac{1}{2}$, $c_2 = -\frac{1}{2}$ in (10), we get the particular solutions $y = \frac{1}{2}(e^{kx} + e^{-kx}) = \cosh kx$ and $y = \frac{1}{2}(e^{kx} - e^{-kx}) = \sinh kx$. Since $\cosh kx$ and $\sinh kx$ are linearly independent on any interval of the x-axis, an alternative form for the general solution of $y'' - k^2y = 0$ is

$$y = c_1 \cosh kx + c_2 \sinh kx. \tag{11}$$

HIGHER-ORDER EQUATIONS In general, to solve an *n*th-order differential equation (1), where the a_i , i = 0, 1, ..., n are real constants, we must solve an *n*th-degree polynomial equation

$$a_n m^n + a_{n-1} m^{n-1} + \dots + a_2 m^2 + a_1 m + a_0 = 0.$$
 (12)

If all the roots of (12) are real and distinct, then the general solution of (1) is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x} + \cdots + c_n e^{m_n x}$$
.

It is somewhat harder to summarize the analogues of Cases II and III because the roots of an auxiliary equation of degree greater than two can occur in many combinations. For example, a fifth-degree equation could have five distinct real roots, or three distinct real and two complex roots, or one real and four complex roots, or five real but equal roots, or five real roots but two of them equal, and so on. When m_1 is a root of multiplicity k of an nth-degree auxiliary equation (that is, k roots are equal to m_1), it can be shown that the linearly independent solutions are

$$e^{m_1x}$$
, xe^{m_1x} , $x^2e^{m_1x}$, ..., $x^{k-1}e^{m_1x}$

and the general solution must contain the linear combination

$$c_1e^{m_1x} + c_2xe^{m_1x} + c_3x^2e^{m_1x} + \cdots + c_kx^{k-1}e^{m_1x}.$$

Finally, it should be remembered that when the coefficients are real, complex roots of an auxiliary equation always appear in conjugate pairs. Thus, for example, a cubic polynomial equation can have at most two complex roots.

EXAMPLE 3 Third-Order DE

Solve y''' + 3y'' - 4y = 0.

SOLUTION It should be apparent from inspection of $m^3 + 3m^2 - 4 = 0$ that one root is $m_1 = 1$, so m - 1 is a factor of $m^3 + 3m^2 - 4$. By division we find

$$m^3 + 3m^2 - 4 = (m-1)(m^2 + 4m + 4) = (m-1)(m+2)^2$$

so the other roots are $m_2 = m_3 = -2$. Thus the general solution of the DE is $y = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$.

EXAMPLE 4 Fourth-Order DE

Solve
$$\frac{d^4y}{dx^4} + 2\frac{d^2y}{dx^2} + y = 0$$
.

SOLUTION The auxiliary equation $m^4 + 2m^2 + 1 = (m^2 + 1)^2 = 0$ has roots $m_1 = m_3 = i$ and $m_2 = m_4 = -i$. Thus from Case II the solution is

$$y = C_1 e^{ix} + C_2 e^{-ix} + C_3 x e^{ix} + C_4 x e^{-ix}.$$

By Euler's formula the grouping $C_1e^{ix} + C_2e^{-ix}$ can be rewritten as

$$c_1 \cos x + c_2 \sin x$$

after a relabeling of constants. Similarly, $x(C_3e^{ix} + C_4e^{-ix})$ can be expressed as $x(c_3\cos x + c_4\sin x)$. Hence the general solution is

$$y = c_1 \cos x + c_2 \sin x + c_3 x \cos x + c_4 x \sin x.$$

Example 4 illustrates a special case when the auxiliary equation has repeated complex roots. In general, if $m_1 = \alpha + i\beta$, $\beta > 0$ is a complex root of multiplicity k of an auxiliary equation with real coefficients, then its conjugate $m_2 = \alpha - i\beta$ is also a root of multiplicity k. From the 2k complex-valued solutions

$$e^{(\alpha+i\beta)x}$$
, $xe^{(\alpha+i\beta)x}$, $x^2e^{(\alpha+i\beta)x}$, ..., $x^{k-1}e^{(\alpha+i\beta)x}$, $e^{(\alpha-i\beta)x}$, $xe^{(\alpha-i\beta)x}$, $x^2e^{(\alpha-i\beta)x}$, ..., $x^{k-1}e^{(\alpha-i\beta)x}$,

we conclude, with the aid of Euler's formula, that the general solution of the corresponding differential equation must then contain a linear combination of the 2k real linearly independent solutions

$$e^{\alpha x}\cos \beta x$$
, $xe^{\alpha x}\cos \beta x$, $x^2e^{\alpha x}\cos \beta x$, ..., $x^{k-1}e^{\alpha x}\cos \beta x$, $e^{\alpha x}\sin \beta x$, $xe^{\alpha x}\sin \beta x$, $x^2e^{\alpha x}\sin \beta x$, ..., $x^{k-1}e^{\alpha x}\sin \beta x$.

In Example 4 we identify k = 2, $\alpha = 0$, and $\beta = 1$.

Solve Questions

