6. HOMOGENEOUS LINEAR EQUATIONS
WITH CONSTANT COEFFICIENTS

INTRODUCTION As a means of motivating the discussion in this section, let us return to first-
order differential equations—more specifically, to homogeneous linear equations ay’' + by = 0,
where the coefficients a # 0 and b are constants. This type of equation can be solved either by
separation of variables or with the aid of an integrating factor, but there is another solution method,
one that uses only algebra. Before illustrating this alternative method, we make one observation:
Solving ay’" + by = 0 for vy’ yields yv' = ky, where k is a constant. This observation reveals the
nature of the unknown solution y; the only nontrivial elementary function whose derivative is a
constant multiple of itself is an exponential function e™*. Now the new solution method: If we substi-
tute y = ¢™ and y' = me™ into ay’ + by = 0, we get

ame™ + be™ =0 or e™ (am + b) = O.

Since e™* is never zero for real values of x, the last equation is satisfied only when m is a solution or
root of the first-degree polynomial equation am + b = (. For this single value of m, y = ¢™" is a
solution of the DE. To illustrate, consider the constant-coefficient equation 2y’ + 5y = 0. It is not
necessary to go through the differentiation and substitution of y = €™ into the DE; we merely have
to form the equation 2m + 5 = 0 and solve it for m. Fromm = —% we conclude thaty = e ™ isa
solution of 2y" + S5y = 0, and its general solution on the interval (—2, ®) isy = ¢,e >,

In this section we will see that the foregoing procedure can produce exponential solutions for
homogeneous linear higher-order DEs,

a,y" + @, Y+t @)+ @y + agy =0, (1)

where the coefficients a;, i = 0, 1, . ... n are real constants and a, & 0.
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CHARACTERISTIC EQUATION OR AUXILIARY EQUATION

AUXILIARY EQUATION We begin by considering the special case of the second-

order equation
ay" + by + cy =0, (2)

where a. b, and ¢ are constants. If we try to find a solution of the form v = ¢, then
after substitution of y' = me™ and y" = m?e™~, equation (2) becomes

am’e™ + bme™ + ce™ = or e™(am* + bm + ¢) = 0.

As in the introduction we argue that because ¢™* # 0 for all x, it is apparent that the
only way v = €™ can satisfy the differential equation (2) is when m is chosen as a
root of the quadratic equation

am* + bm + ¢ = 0. (3)

This last equation is called the auxiliary equation of the differential equa-
tion (2). Since the two roots of (3) are m; = (—b + Vb — 4ac)/2a and

m, =(—b— e 4ac) /2a, there will be three forms of the general solution of
(2) corresponding to the three cases:

» m, and m, real and distinct (b> — dac > 0),
» m; and m, real and equal (b*> — 4ac = 0), and
» m, and m, conjugate complex numbers (b*> — 4ac < 0).

We discuss each of these cases in turn.
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CASE I: DISTINCT REAL ROOTS Under the assumption that the auxiliary equa-
tion (3) has two unequal real roots m; and m,, we find two solutions, y; = ¢™* and
v, = "', We see that these functions are linearly independent on (—ce, o) and hence
form a fundamental set. It follows that the general solution of (2) on this interval is

y = {.lgﬂ'h.t + {.Egm_,.r_ {4]

CASE II: REPEATED REAL ROOTS When m; = m,. we necessarily obtain only
one exponential solution, v; = ¢™. From the quadratic formula we find that
my = —b/2a since the only way to have m; = ma is to have b* — 4ac = 0. It follows
from (5) in Section 4.2 that a second solution of the equation is

€2m11
Yy, = e J 2 dx = ™" | dx = xe™". (5)
In (5) we have used the fact that —b/a = 2m,. The general solution is then
_-11-'1 — 'I:‘JEmII _|_ L.ll-e.ﬂ'l].f. {6}
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Note: (used to find the other solution in Case-lII)
Consider the following equation
'+ POy + Q(x)y =0, (1)

If y,(x) is a known solution of (1) then the second solution
is found by the formula

) E—J-Pf..r'sd.r
Y2 = }’J(-l')J T ——dx.
yilx)

CASE llIl: CONJUGATE COMPLEX ROOTS If m; and m; are complex, then we
can write m; = a + i3 and m> = a — i3, where « and 8 = 0 are real and i* = —1.
Formally, there is no difference between this case and Case I, and hence

y = Ce«tiBx + Cela P,

However, in practice we prefer to work with real functions instead of complex
exponentials. To this end we use Euler’s formula:

e = cos § + isin 8,
where 6 is any real number.” It follows from this formula that

eP*=cosBx +isinBx and e P* = cos Bx — isin Bx, (7)
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where we have used cos(—Bx) = cos Bx and sin(—Bx) = —sin Bx. Note that by first
adding and then subtracting the two equations in (7), we obtain, respectively,

ePr + ¢ =2cos Bx  and  €F* — ¢ P = 2isin Bx.

Since y = Cje!®tPx + Cel® P75 3 solution of (2) for any choice of the constants C,
and C,, the choices C; = C; =1 and C, =1, (; = —1 give, in turn, two solutions:

y, = Efﬂﬂﬁ}x + E{a—fﬁ}x and Vv, = Efﬂﬂﬁ}: _ E{a—iﬁh_
But v, = e*(eP* + ¢ PY) = 2¢* cos Bx
and y, = e*(e'P* — ¢ %) = 2je™* sin Bx.

Hence from Corollary (A) of Theorem 4.1.2 the last two results show that ¢** cos Bx
and e™ sin Bx are real solutions of (2). Moreover, these solutions form a fundamen-
tal set on (—2¢, =). Consequently, the general solution is

v = cje** cos Bx + c,e* sin Bx = e**(c, cos Bx + ¢, sin Bx). (8)

Corollary (A)

A constant multiple y = ¢;y,(x) of a solution yi(x) of a homogeneous
linear differential equation is also a solution.
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I EXAMPLE 1 Second-Order DEs

Solve the following differential equations.
(a) 2y" —5v' —3y=0 (b) ¥" —10y" + 25y =10 (c) vV +4y" +Ty=10

SOLUTION We give the auxiliary equations, the roots, and the corresponding gen-
eral solutions.

(@) 2m* —=5Sm —3=02m+ )m—3)=0, m = —3.my =3
From (4), y = cie ™% + coe ™.

(b)) m*=—10m+25=m—5%*=0, m=m=>5

From (6), y = c,e™" + coxe™.

(¢) m*+4m + 7 =0, m|=—2+\/§i, m2=—2—\/§f
From (8) witha = =2, 8 = \/5, y=e ¥ (:: | COS Vix + 5 sin REI) H
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I EXAMPLE 2  An Initial-Value Problem

Solve 4y" + 4y" + 17y =0, y(0) = — 1, y'(0) = 2.

SOLUTION By the quadratic formula we find that the roots of the auxiliary

equation 4m*+4m + 17 =0 are m, = —% + 2iand m, = —% — 2i. Thus from
(8) we have y = e (¢, cos 2x + ¢, sin 2x). Applying the condition y(0) = —1,
we see from e%cjcos0+ casin0)= —1 that ¢, = —1. Differentiating

y = e *(—cos 2x + ¢; sin 2x) and then using y'(0) = 2 gives 2c; + % =20rc,; = %.
Hence the solution of the IVP is y = ¢~ **(—cos 2x + 5 sin 2x). In Figure 4.3.1 we
see that the solution is oscillatory, but y—=0asx—=and |y| = 2asx— —=. N

-3 -2-1 1 2 3 4 5

FICGURE 4.3.1 Solution curve of IVP
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TWO EQUATIONS WORTH KNOWING The two differential equations

v' + ky =0 and y' — Ky =0,

where k is real, are important in applied mathematics. For y” + k*y = 0 the auxiliary
equation m> + k% = 0 has imaginary roots m; = ki and m, = —ki. With @ = 0 and
2 = k in (8) the general solution of the DE is seen to be

y = ¢,cos kx + ¢, sin kx. 9)

On the other hand, the auxiliary equation m?> — k% = 0 for y” — k*y = 0 has distinct

real roots m; = k and m> = —k, and so by (4) the general solution of the DE is
y = ;e + ce ™ (10)
Notice that if we choose ¢, = ¢, = % and ¢; = % Cy = —% in (10), we get the particu-

lar solutions y = (e + ¢ ) = cosh kx and y = 7(e"* — e *) = sinh kx. Since
cosh kx and sinh kx are linearly independent on any interval of the x-axis, an alternative
form for the general solution of y* — k*y = 0 is

v = ¢y cosh kx + ¢, sinh kx. (11)
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HIGHER-ORDER EQUATIONS In general, to solve an nth-order differential

equation (1), where the a@;, i = 0, 1, . .., n are real constants, we must solve an nth-
degree polynomial equation
am'+ a,_m '+ -+ am+am+ a, = 0. (12)

If all the roots of (12) are real and distinct, then the general solution of (1) is
v = L]E"”"T + L-?E.'rrg.r + .-+ C”g-'i'?n-'f_

It is somewhat harder to summarize the analogues of Cases II and III because the
roots of an auxiliary equation of degree greater than two can occur in many combi-
nations. For example, a fifth-degree equation could have five distinct real roots, or
three distinct real and two complex roots, or one real and four complex roots, or five
real but equal roots, or five real roots but two of them equal, and so on. When m, is a
root of multiplicity k of an nth-degree auxiliary equation (that is, k roots are equal
to my), it can be shown that the linearly independent solutions are

emx_ Xﬁ'm'r, XEE’”I"':. L Xk—IE.'rr,_r
and the general solution must contain the linear combination

cle.'rr,.r + C}l.'ﬁ‘m"r + ;:_1_1'39”’1-‘ 4+ -+ f.{--rk_JEm'r-

Finally, it should be remembered that when the coefficients are real, complex
roots of an auxiliary equation always appear in conjugate pairs. Thus, for example,
a cubic polynomial equation can have at most two complex roots.
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I EXAMPLE 3  Third-Order DE

Solve y" + 3y" — 4y = 0.

SOLUTION It should be apparent from inspection of m® + 3m” — 4 = 0 that one
root is m; = 1, som — 1 is a factor of m* + 3m* — 4. By division we find

m +3mP—4=m— 1)(m*+4m +4) = (m — D(m + 2)%

so the other roots are m; = m3 = —2. Thus the general solution of the DE is
y = cie* + cpe 2 + c3xe ]
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I EXAMPLE 4 Fourth-Order DE

d*y d?y
— 4+ 2—+ yvy=0.
Solve I 2 2 y=0

SOLUTION The auxiliary equation m*+ 2m”> + 1 = (m*>+ 1)>=0 has roots
m; = mz = i and m>, = my = —i. Thus from Case II the solution is

y = Cigt* + Cije ™ + Csxet* + Coxe™.
By Euler’s formula the grouping Cje'* + Cae™ ™ can be rewritten as

ccosx + ¢ sinx

after a relabeling of constants. Similarly, x(Cze™ + Cse™ ™) can be expressed as
x(c3 cos x + ¢4 sin x). Hence the general solution is

y = ¢ cosx + ¢;sinx + ¢3xcos x + X sin x. [
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Example 4 illustrates a special case when the auxiliary equation has repeated
complex roots. In general, if m; = a + i3, 5 = 0 is a complex root of multiplicity k
of an auxiliary equation with real coefficients, then its conjugate m>» = a — if3 is also
a root of multiplicity k. From the 2k complex-valued solutions

E{a+i_ﬂ}lxg ‘.‘m,{.f:+1;_|B:}.r1 12€fa+£_ﬂ}x, . xk—leiaﬂﬁ}.r!

E{ﬂ—iﬁjxg IE{ﬂ!—fﬁ:}.t“ Iiefa—iﬁ}x, . _rk—leiﬂ—iﬁ}.r,

we conclude, with the aid of Euler’s formula, that the general solution of the corre-
sponding differential equation must then contain a linear combination of the 2k real
linearly independent solutions

e“*cos Bx, xe**cos Bx, x*e“cos Bx, ..., x*le**cos Bx,
e““sin Bx, xe““sin Bx, xPe“sinBx, .... x*le**sinfx.

In Example 4 we identify k =2, a = 0,and § = 1.

Solve Questions
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