10. LINEAR DIFFERENTIAL SYSTEMS

DIFFERENTIAL OPERATORS AND THE ELIMINATION METHOD FOR SYSTEMS

u

The notation y'(f) = s 3; v was devised to suggest that the derivative of a function y is the

result of operating on the function y with the differentiation operator — d . Indeed. second

dt
dE
derivatives are formed by iterating the operation: y"(f) = d—; jf ;y Commonly, the sym-

bol D is used instead of di‘ and the second-order differential equation
yotdy +3y=0
is represented’ by

D% + 4Dy + 3y = (D* + 4D + 3)[y] =
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So, we have implicitly adopted the convention that the operator “product.” D times D, is
interpreted as the composition of D with itself, when it operates on functions: D*y means D[D[ y]};
i.e., the second derivative. Similarly, the product (D + 3)(D + 1) operates on a function via

(D+3)D+1)[y] =D +3) (D+1)[y]| =@ +3)[y +y]
= D[}!’ + y] + 3[}?’ —|—y]
=" +y)+ 3y +3y)=y"+4y +3y=(D*+4D + 3)[y] .

Thus, (D + 3)(D + 1) is the same operator as D* + 4D + 3; when they are applied to
twice-differentiable functions, the results are identical.

Example I  Show that the operator (D + 1)(D + 3) is also the same as D> + 4D + 3.
Solution For any twice-differentiable function y(f), we have

(D+1)(D+3)[y] =(D+1)[(D+3)[y]]| =D+ 1)y +3y]
=D[y’ + 3}'] + l[y’ + 3}?] =(y"+3y')+ (v + 3y)
=y"+ 4y +3y=(D*+4D + 3)[y] .

Hence, D+ 1)(D+3)=D*+4D + 3. »
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Since (D + 1)(D + 3) = (D + 3)(D + 1) = D* + 4D + 3, it is tempting to generalize and
propose that one can treat expressions like aD* + bD + c as if they were ordinary polynomials
in D. This is true, as long as we restrict the coefficients a, b, ¢ to be constants. The following
example, which has variable coefficients, is instructive.

Example 2 Show that (D + 3t)D is not the same as D(D + 3t).
Solution With y(t) as before,
(D+30)D[y] = (D+31)[y'] =y + 30 ;
D(D +31)[y] = D[y +3ty] =y + 3y + 3n" .

They are not the same! #

Dr. Gizem SEYHAN OZTEPE-Ankara University Dept. of Mathematics




This means that the familiar elimination method, used for solving algebraic systems like

Ix—2yt+tz=4,
x+y—z=0,
2x—y+3z=6,
can be adapted to solve any system of linear differential equations with constant coefficients.

Our goal in this section is to formalize this elimination method so that we can tackle more
general linear constant coefficient systems.
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We first demonstrate how the method applies to a linear system of two first-order differen-
tial equations of the form

ax'(t) + ax(t) + asy' (1) + agy(r) = fi(1) .
asx' (1) + agx(t) + a7y’ (1) + agy(t) = f(t) .

where a,. a. . . . , ag are constants and x(¢), y(1) is the function pair to be determined. In opera-
tor notation this becomes

(a\D + ﬂz)[x] + (a3D + ﬂ4)[}’] =fi .
(asD + ag) x| + (a:D + ag)[y] =1 .

Example 3  Solve the system

x'(t) = 3x(¢) — 4v(1) + 1,

(1)
y'(1) = 4x(r) — 7y(1) + 101 .
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The above procedure works, more generally, for any linear system of two equations and
two unknowns with constant coefficients regardless of the order of the equations. For example,
if we let Ly, L,, L3, and L4 denote linear differential operators with constant coefficients (i.e.,
polynomials in D), then the method can be applied to the linear system

Lix] + Ly] =1 .
Li[x] + Ly[y] = 1> .

Because the system has constant coefficients, the operators commute (e.g.. LoLy = L4lL5)
and we can eliminate variables in the usual algebraic fashion. Eliminating the variable y gives

u

(7) (LiLy — LL3)[x] = g, .
where g = Ly4[ fi] — L»| f>]. Similarly, eliminating the variable x yields
8)  (LiLsy — LoLs)[y] = g .

where g, = L,| f5] — Ls| f;]. Now if L,L, — L,L51s a differential operator of order n, then a
general solution for (7) contains n arbitrary constants, and a general solution for (8) also
contains #n arbitrary constants. Thus, a total of 2n constants arise. However, as we saw in Exam-
ple 3, there are only n of these that are independent for the system; the remaining constants can
be expressed in terms of these.” The pair of general solutions to (7) and (8) written in terms of
the n independent constants is called a general solution for the system.
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If It turns out that
L]L4 - L}Lg

IS the zero operator, the system is said to be degenerate.
As with the anomalous problem of solving for the points of intersection
of two parallel or coincident lines, a degenerate system may have no

solutions, or if it does possess solutions, they may involve any number
of arbitrary constants
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Elimination Procedure for 2 x 2 Systems

To find a general solution for the system

Li[x] + Ly[y] =fi .
Ly[x] + Lyy| = 1, .
where L. L,. L. and L, are polynomials in D = d/dt:

(a) Make sure that the system is written in operator form.

(b) Eliminate one of the variables, say, v, and solve the resulting equation for x(¢). If the
system 1s degenerate, stop! A separate analysis 1s required to determine whether or
not there are solutions.

(¢) (Shortcut) If possible, use the system to derive an equation that involves y(z) but not
its derivatives. [Otherwise, go to step (d).] Substitute the found expression for x()
into this equation to get a formula for y(¢). The expressions for x(f), y(t) give the
desired general solution.

(d) Eliminate x from the system and solve for y(z). [Solving for () gives more
constants—in fact, twice as many as needed. |

(e) Remove the extra constants by substituting the expressions for x(f) and y(z) into
one or both of the equations in the system. Write the expressions for x(¢) and y(z) in
terms of the remaining constants.
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