MTH 102 Calculus -II Dr. Gizem SEYHAN ÖZTEPE Topic-10-Alternating Series
 Power Series

An alternating series is a series whose terms are alternately positive and negative. Here are two examples:

$$
\begin{gathered}
\sum_{n=1}^{\infty}(-1)^{n}=-1+1-1+\cdots \\
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}=-\frac{1}{3}+\frac{1}{3^{2}}-\frac{1}{3^{3}}+\cdots
\end{gathered}
$$

Theorem (Leibniz's Test)

If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\cdots
$$

satisfies

$$
\text { (i) } 0<b_{n+1} \leq b_{n} \text { for all } n \geq 1 \text {, }
$$

(ii) $\lim _{n \rightarrow \infty} b_{n}=0$,
then the series is convergent.

Absolute and Conditional Convergence

Definition: A series $\sum a_{n}$ is absolutely convergent if the corresponding series of absolute values, $\sum\left|a_{n}\right|$, is convergent.

A series $\sum a_{n}$ is called conditionally convergent if it is convergent but not absolutely convergent.

Theorem If $\sum\left|a_{n}\right|$ converges, then $\sum a_{n}$ converges.

Power Series

Definition: A series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

is called a power series in $(x-a)$ or power series centered at a or a power series about a, where x is a variable and the c_{n} 's are constants called the coefficients of the series.

In this section our question is for what values of x is the power series convergent?

Definition: Let the power series $\sum c_{n}(x-a)^{n}$ be convergent for $|x-a|<R$. The number R is called the radius of convergence of the power series. If the series converges only when $x=a$, then $R=0$. If the series converges for all x, then $R=\infty$. The interval of convergence of a power series is the interval that consits of all values of x for which the series converges.

	Series	Radius of convergence	Interval of convergence
Geometric series	$\sum_{n=0}^{\infty} x^{n}$	$R=1$	$(-1,1)$
Example 1	$\sum_{n=0}^{\infty} n!x^{n}$	$R=0$	$\{0\}$
Example 2	$\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n}$	$R=1$	$[2,4)$
Example 3	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}$	$R=\infty$	$(-\infty, \infty)$

