MTH 102 Calculus -II

Dr. Gizem SEYHAN ÖZTEPE

Topic-5-Applications of Integration Arc Length, Area of a Surface of Revolution

2.3 Arc Length

What do we mean by the length of a curve? We might think of fitting a piece of string to the curve in Figure 1 and then measuring the string against a ruler. But that might be difficult to do with much accuracy if we have a complicated curve. If the curve is a polygon, we can easily find its length; we just add the lengths of the line segments

FIGURE 2
 that form the polygon. (We can use the distance formula to find the distance between the endpoints of each segment.) We are going to define the length of a general curve by first approximating it by a polygon and then taking a limit as the number of segments of the polygon is increased. This process is familiar for the case of a circle, where the circumference is the limit of lengths of inscribed polygons (see Figure 2).

Figure 3

The Mean Value Theorem Let f be a function that satisfies the following

 hypotheses:1. f is continuous on the closed interval $[a, b]$.
2. f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

1

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

or, equivalently,
2

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Example 1 Find the length of the arc of the semicubical parabola $y^{2}=x^{3}$ between the points $(1,1)$ and $(4,8)$.

Solution

2.4 Area of a Surface of Revolution

FIGURE 1
A surface of revolution is formed when a curve is rotated about a line. Such as a sphere, a cone, a cylinder ...
Let's start with some simple surfaces. The lateral surface area of a circular cylinder with radius r and height h is taken to be $A=2 \pi r h$ because we can imagine cutting the cylinder and unrolling it (as in Figure 1) to obtain a rectangle with dimensions $2 \pi r$ and h.

Likewise, we can take a circular cone with base radius r and slant height l, cut it along the dashed line in Figure 2, and flatten it to form a sector of a circle with radius l and central angle $\theta=\frac{2 \pi r}{l}$. We know that, in general, the area of a sector of a circle with radius l and angle θ is $\frac{1}{2} l^{2} \theta$, and so in this case the area is

$$
A=\frac{1}{2} l^{2} \theta=\frac{1}{2} l^{2}\left(\frac{2 \pi r}{l}\right)=\pi r l
$$

Therefore we define the lateral surface area of a cone to be $A=$ $\pi r l$.

Figure 2

What about more complicated surfaces of revolution? If we follow the strategy we used with arc length, we can approximate the original curve by a polygon. When this polygon is rotated about an axis, it creates a simpler surface whose surface area approximates the actual surface area. By taking a limit, we can determine the exact surface area.

FIGURE 3

(a) Surface of revolution

(b) Approximating band

FIGURE 4

Example 1

The curve $y=\sqrt{4-x^{2}},-1 \leq x \leq 1$, is an arc of the circle $x^{2}+$ $y^{2}=4$. Find the area of the surface obtained by rotating this arc about the x-axis.

Example 2

The arc of the parabola $y=x^{2}$ from $(1,1)$ to $(2,4)$ is rotated about the y-axis. Find the area of the resulting surface.

Figure 7 shows the surface of revolution whose area is computed in Example 2.

FIGURE 7

2.5 Calculating Some Limits by Using Integral

Theorem

$f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then

$$
\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a+k \frac{b-a}{n}\right)=\int_{a}^{b} f(x) d x
$$

