Lecture 1: Sytems of Linear Equations

Elif Tan

Ankara University

Systems of Linear Equations

Definition

A linear equation in n unknowns is an equation which has the form

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b . \tag{1}
\end{equation*}
$$

Here $x_{1}, x_{2}, \ldots, x_{n}$ are unknowns, $a_{1}, a_{2}, \ldots, a_{n}$, and b are real or complex constants.

A solution of a linear equation is a sequence of $s_{1}, s_{2}, \ldots, s_{n}$, such that (1) is satisfied when

$$
x_{1}=s_{1}, x_{2}=s_{2}, \ldots, x_{n}=s_{n} .
$$

Systems of Linear Equations

Examples

A solution of the linear equation

$$
3 x_{1}+2 x_{2}-5 x_{3}=-7
$$

is $x_{1}=2, x_{2}=1$, and $x_{3}=3$.
The equations

$$
2 \sqrt{x_{1}}-5 x_{3}=12
$$

and

$$
3 x_{1} x_{2}+7 x_{3}=-1
$$

are not linear equations because they are not in the form (1).

Systems of Linear Equations

Definition

A system of linear equations is a set of m linear equations in n unknowns which has the form

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =b_{1} \\
\vdots & \vdots \tag{2}\\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} & =b_{m} .
\end{array}
$$

Here $a_{i j}$ are known constants.
A solution of the linear system (2) is a sequence $s_{1}, s_{2}, \ldots, s_{n}$, such that every equation in the system (2) is satisfied when $x_{1}=s_{1}, x_{2}=s_{2}, \ldots, x_{n}=s_{n}$.

Systems of Linear Equations

- If the linear system (2) has no solution, then it is called inconsistent.
- If the linear system (2) has one or more solutions, then it is called consistent.
- If $b_{1}=b_{2}=\cdots=b_{n}=0$, then the linear system (2) is called a homogeneous system. Note that a solution to a homogeneous system such that $x_{1}=x_{2}=\cdots=x_{n}=0$ is called a trivial solution, otherwise it is called a nontrivial solution.

Systems of Linear Equations

To find a solution to a linear system, we use the method of elimination which allow us to obtain a new linear system that has exactly the same solutions, but is easy to solve. We need the following 3 manipulations:
(1) Interchange the i-th and j-th equations

Systems of Linear Equations

To find a solution to a linear system, we use the method of elimination which allow us to obtain a new linear system that has exactly the same solutions, but is easy to solve. We need the following 3 manipulations:
(1) Interchange the i-th and j-th equations
(2) Multiply an equation by a non zero constant

Systems of Linear Equations

To find a solution to a linear system, we use the method of elimination which allow us to obtain a new linear system that has exactly the same solutions, but is easy to solve. We need the following 3 manipulations:
(1) Interchange the i-th and j-th equations
(2) Multiply an equation by a non zero constant
(3) Add a multiple of i-th equation to the another j-th equation.

Systems of Linear Equations

Example

Consider the linear system

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =5 \\
2 x_{1}+x_{2}-3 x_{3} & =1 \\
x_{1}-x_{2}+x_{3} & =3 .
\end{aligned}
$$

If we add (-2) times the first equation to the second one and (-1) times the first equation to the third one, we get

$$
\begin{aligned}
& -3 x_{2}-9 x_{3}=-9 \\
& -3 x_{2}-2 x_{3}=-2
\end{aligned}
$$

Systems of Linear Equations

Example

If we add (-1) times the first equation to the second one, we get $x_{3}=1$. Then substituting the value of x_{3} into the first equation of second linear system, we get $x_{2}=0$.
Finally substituting these values of x_{2} and x_{3} into the first equation of first linear system, we find that $x_{1}=2$.

