Lecture 2: Matrices

Elif Tan

Ankara University

Matrices

Definition

An $m \times n$ matrix A is a rectangular array of $m n$ scalars, i.e.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]_{m \times n}
$$

- We say that the size of the matrix is $m \times n$.
- If $m=n, A$ is called a square matrix.
- The scalar $a_{i j}$ which is in the i-th row and j-th column of A is called the (i, j)-th entry of A.
- We write the matrix A as $A=\left[a_{i j}\right]_{m \times n}$.
- If all corresponding entries of $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$ are equal, then they are called an equal matrix.

Matrix Operations

Matrix addition: Let $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$. Then $A+B=\left[a_{i j}+b_{i j}\right]_{m \times n}$.
Scalar multiplication: Let $A=\left[a_{i j}\right]_{m \times n}$ and $r \in \mathbb{R}$. Then $r A=\left[r a_{i j}\right]_{m \times n}$. Transpose: Let $A=\left[a_{i j}\right]_{m \times n}$. Then $A^{T}=\left[a_{j i}\right]_{n \times m}$. Matrix multiplication: Let $A=\left[a_{i j}\right]_{m \times p}$ and $B=\left[b_{i j}\right]_{p \times n}$. The product of A and B is defined by

$$
A B=\left[c_{i j}\right]_{m \times n}, \text { where } c_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j} .
$$

Note that the product of A and B is defined only when the number of columns of A is equal to the number of rows of B.

Properties of Matrix Operations

Theorem (Matrix addition)

Let A, B, and C be $m \times n$ matrices.
(a) $A+B=B+A$
(b) $A+(B+C)=(A+B)+C$
(c) $A+0=A$ (0 is $m \times n$ zero matrix)
(d) $A+(-A)=0(-A$ is the negative of $A)$

Properties of Matrix Operations

Theorem (Scalar multiplication)

Let A, B be $m \times n$ matrices and $r, s \in \mathbb{R}$.
(a) $r(s A)=(r s) A$
(b) $(r+s) A=r A+s A$
(c) $r(A+B)=r A+r B$
(d) $A(r B)=r(A B)=(r A) B$.

Properties of Matrix Operations

Theorem (Matrix multiplication)

Let A, B, and C are matrices of the appropriate sizes.
(a) $A(B C)=(A B) C$
(b) $(A+B) C=A C+B C$
(c) $C(A+B)=C A+C B$.

Remark: Note that $A B$ need not always equal $B A$!
For example, let $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$. Then $A B=$ $\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]$ while $B A=\left[\begin{array}{ll}2 & 2 \\ 0 & 3\end{array}\right]$.

Properties of Matrix Operations

Theorem (Transpose)

Let A, B are matrices of the appropriate sizes and $r \in \mathbb{R}$.
(a) $\left(A^{T}\right)^{T}=A$
(b) $(A+B)^{T}=A^{T}+B^{T}$
(c) $(A B)^{T}=B^{T} A^{T}$
(d) $(r A)^{T}=r A^{T}$.

Non singular Matrix

Definition

Identity matrix: The matrix $I_{n}=\left[d_{i j}\right]_{n \times n}$ is called the $n \times n$ identity matrix whose entries satisfy the following rule:

$$
d_{i j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Nonsingular matrix: The matrix $A=\left[a_{i j}\right]_{n \times n}$ is called the nonsingular matrix if there exists a matrix $B=\left[b_{i j}\right]_{n \times n}$ such that $A B=B A=I_{n}$. The matrix B is called an inverse of A.

Theorem

The inverse of a matrix is unique, if it exists.

Nonsingular Matrix

Theorem (Properties of inverse of a matrix)
Let A and B be $n \times n$ matrices.
(a) $\left(A^{-1}\right)^{-1}=A$
(b) $(A B)^{-1}=B^{-1} A^{-1}$
(c) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

