Lecture 3: Solving Linear Systems

Elif Tan

Ankara University

Matrix representation of a linear system

Consider the linear system of m equations in n unknowns,

$$
\begin{align*}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}= & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}= & b_{1} \\
& \vdots \tag{1}\\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}= & b_{m} .
\end{align*}
$$

Define the matrices;

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]_{m \times n}, x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]_{n \times 1}, b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]_{m \times 1} .
$$

Then the linear system (1) can be written in matrix form as:

$$
A x=b
$$

Matrix representation of a linear system

- The matrix A is called coefficient matrix of the linear system (1).
- The matrix $[A: b]$ which is obtained by adjoining column b to A is called augmented matrix of the linear system (1).

Example

Consider the linear system

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}=5 \\
2 x_{1}+x_{2}-3 x_{3}=1 \\
x_{1}-x_{2}+x_{3}=3
\end{array}
$$

The linear system can be written in a matrix form as $A x=b$:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & -3 \\
1 & -1 & 1
\end{array}\right]_{3 \times 3}, x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]_{3 \times 1}, b=\left[\begin{array}{l}
5 \\
1 \\
3
\end{array}\right]_{3 \times 1} .
$$

Echelon form af a matrix

Definition

An $m \times n$ matrix A is said to be in reduced row echelon form if it satisfies the followig rules:
(a) All zero rows, if there are any, lie at the bottom of the matrix.
(b) The first nonzero entry from the left of a non zero row is 1 . (This entry is called a leading one of its row)
(c) For each nonzero row, the leading one lies to the right and below of any leading ones in preceding row.
If a matrix also satisfies the following condition, we say that it is in reduced row echelon form.
(d) If a column contains a leading one, then all other entries in that column are zero.

Similar definition can be given for the reduced column echelon form.

Echelon form af a matrix

Examples

The following matrices are not in reduced row echelon form:

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 2 & 3 \\
0 & 0 & 1 & 3 & 5 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right],\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

The following matrices are in row echelon form:

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 2 & 3 \\
0 & 1 & 1 & 3 & 5 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lllll}
1 & 0 & 2 & 3 & 5 \\
0 & 1 & 8 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The following matrices are in reduced row echelon form:

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 2 & 3 \\
0 & 1 & 0 & 3 & 5 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lllll}
1 & 0 & 2 & 3 & 0 \\
0 & 1 & 8 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Echelon form af a matrix

Every matrix can be transform row (column) echelon form by means of row (column) operations:

Definition

An elemantary row operations on a matrix A are
(1) Interchange the i-th and j-th rows $\left(r_{i} \leftrightarrow r_{j}\right)$
(2) Multiply a row by a non zero constant $\left(k r_{i} \rightarrow r_{i}\right)$
(3) Add a multiple of i-th row to the another j-th row $\left(k r_{i}+r_{j} \rightarrow r_{j}\right)$

Echelon form af a matrix

Example

Consider the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & -3 \\ 1 & -1 & 1\end{array}\right]$.
By using the following elemantary operations respectively:

$$
-2 r_{1}+r_{2} \rightarrow r_{2},-r_{1}+r_{3} \rightarrow r_{3}, \frac{-1}{3} r_{2} \rightarrow r_{2}, 3 r_{2}+r_{3} \rightarrow r_{3}, \frac{1}{7} r_{3} \rightarrow r_{3}
$$

we obtain the echelon form of the matrix A as: $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$.

Echelon form af a matrix

Example

For the reduced row echelon form, we use the following operations:

$$
\begin{aligned}
& -3 r_{3}+r_{2} \rightarrow r_{2} \\
& -3 r_{3}+r_{1} \rightarrow r_{1} \\
& -2 r_{2}+r_{1} \rightarrow r_{1}
\end{aligned}
$$

Then we obtain the reduced row echelon form of the matrix A as
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Solving Linear Systems

Now we use echelon forms to determine the solutions of a linar system. We have two methods for solving a linear sytem:
(1) Gauss Elemination Method:

- Transform the augmented matrix $[A: b]$ to the row echelon form $[C: d]$ by using elemantary row operations
- Solve the corresponding linear system $[C: d]$ by using back substitution.
(2) Gauss-Jordan Method:
- Transform the augmented matrix $[A: b]$ to the reduced row echelon form $[C: d]$ by using elemantary row operations
- Solve the corresponding linear system $[C: d]$ without back substitution.

Solving Linear Systems

Example

Solve the linear system

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}=5 \\
2 x_{1}+x_{2}-3 x_{3}=1 \\
x_{1}-x_{2}+x_{3}=3 .
\end{array}
$$

Solution: We can write the above linear system in a matrix form

$$
A x=b \Rightarrow\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & -3 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
5 \\
1 \\
3
\end{array}\right]
$$

Solving Linear Systems

If we transform the augmented matrix of the linear system to the row echelon form, we get

$$
[A: b] \approx\left[\begin{array}{ccccc}
1 & 2 & 3 & : & 5 \\
2 & 1 & -3 & : & 1 \\
1 & -1 & 1 & : & 3
\end{array}\right] \approx \cdots \approx\left[\begin{array}{ccccc}
1 & 2 & 3 & : & 5 \\
0 & 1 & 3 & : & 3 \\
0 & 0 & 1 & : & 1
\end{array}\right]
$$

The corresponding linear system is

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =5 \\
x_{2}+3 x_{3} & =3 \\
x_{3} & =1 .
\end{aligned}
$$

Then by using back substitution, the unique solution of the linear system is $x_{1}=2, x_{2}=0, x_{3}=1$.

Solving Linear Systems

To obtain the solution of the linear system by using Gauss-Jordan method, we transform the augmented matrix in a reduced row echlon form:

$$
[A: b] \approx\left[\begin{array}{ccccc}
1 & 2 & 3 & : & 5 \\
2 & 1 & -3 & : & 1 \\
1 & -1 & 1 & : & 3
\end{array}\right] \approx \cdots \approx\left[\begin{array}{ccccc}
1 & 0 & 0 & : & 2 \\
0 & 1 & 0 & : & 0 \\
0 & 0 & 1 & : & 1
\end{array}\right]
$$

Then the unique solution of the linear system is $x_{1}=2, x_{2}=0, x_{3}=1$.

Solving Linear Systems

Example

Solve the linear system

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4} & =5 \\
x_{2}+2 x_{3}+3 x_{4} & =1 \\
2 x_{2}+4 x_{3}+6 x_{4} & =3 .
\end{aligned}
$$

Solution: If we transform the augmented matrix of the linear system to the row echelon form, we get

$$
[A: b] \approx\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & : & 5 \\
0 & 1 & 2 & 3 & : & 1 \\
0 & 2 & 4 & 6 & : & 3
\end{array}\right] \approx\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & : & 5 \\
0 & 1 & 2 & 3 & : & 1 \\
0 & 0 & 0 & 0 & : & 1
\end{array}\right]
$$

Since the last equation $0 x_{1}+0 x_{2}+0 x_{3}+0 x_{4}=1$ can never be satisfied, the linear system has no solution. (It is inconsistent).

Solving Linear Systems

Example

Solve the linear system

$$
\begin{aligned}
x_{1}+2 x_{3}+3 x_{4}+x_{5} & =5 \\
x_{2}-x_{3}+3 x_{4}+2 x_{5} & =1 \\
x_{3}+3 x_{4}+2 x_{5} & =1 \\
2 x_{4}+6 x_{5} & =2 .
\end{aligned}
$$

Solution: If we transform the augmented matrix of the linear system to the row echelon form, we get

$$
[A: b] \approx\left[\begin{array}{ccccccc}
1 & 0 & 2 & 3 & 1 & : & 5 \\
0 & 1 & -1 & 3 & 2 & : & 1 \\
0 & 0 & 1 & 3 & 2 & : & 2 \\
0 & 0 & 0 & 2 & 6 & : & 2
\end{array}\right] \approx\left[\begin{array}{ccccccc}
1 & 0 & 2 & 3 & 1 & : & 5 \\
0 & 1 & -1 & 3 & 2 & : & 1 \\
0 & 0 & 1 & 3 & 2 & : & 2 \\
0 & 0 & 0 & 1 & 3 & : & 1
\end{array}\right]
$$

Solving Linear Systems

The corresponding linear system is

$$
\begin{aligned}
x_{1}+2 x_{3}+3 x_{4}+x_{5} & =5 \\
x_{2}-x_{3}+3 x_{4}+2 x_{5} & =1 \\
x_{3}+3 x_{4}+2 x_{5} & =2 \\
x_{4}+3 x_{5} & =1 .
\end{aligned}
$$

Solving Linear Systems

Then the linear system has infinitely many solutions depend on the real parameter r :

$$
\begin{aligned}
& x_{1}=4-6 r \\
& x_{2}=-4-14 r \\
& x_{3}=-1+7 r \\
& x_{4}=1-3 r \\
& x_{5}=r, r \in \mathbb{R} .
\end{aligned}
$$

Solving Linear Systems

Remark: Consider the linear system $A x=b$. When we transform the augmented matrix $[A: b]$ to the row echelon form $[C: d]$;
(1) If the number of nonzero rows of $[C: d]$ is equal to the number of nonzero rows of $[C]$, the linear system is consistent.

- In this case if the number of unknowns (n) is equal to the number of nonzero rows (r), then the system has a unique solution.
- If the number of unknowns (n) is greater than to the number of nonzero rows (r), then the system has infinitely many solutions depend on $n-r$ parameters.
(2) If the number of nonzero rows of $[C: d]$ is not equal to the number of nonzero rows of $[C]$, the linear system has no solution (inconsistent).

Finding Inverse of a Matrix

Let A is an $n \times n$ square matrix. To find A^{-1}, if it exists, we transform the augmented matrix $\left[A: I_{n}\right]$ to the reduced row echelon form $[C: D]$.

- If $C=I_{n}$, then $D=A^{-1}$
- If $C \neq I_{n}$, then C has a row of zeros. (A is singular)

Finding Inverse of a Matrix

Remark: For $n \times n$ matrix A, the followings are equivalent:
(1) A is nonsingular, that is, A^{-1} exists.
(2) A is row equivalent to I_{n}, that is, the reduced row echelon form of A is I_{n}.
(3) The linear system $A x=b$ has a unique solution for every $n \times 1$ matrix b.
(1) The homogenous linear system $A x=0$ has only zero (trivial) solution.

Finding Inverse of a Matrix

Example

Consider the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & -3 \\ 1 & -1 & 1\end{array}\right]$. Since the reduced row echelon form of the matrix A is I_{3}, the matrix A is nonsingular.

