Lecture 4: Determinants

Elif Tan

Ankara University

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

(문) (문)

Definition (Permutation)

Let $S = \{1, 2, ..., n\}$ be a set of integers, arranged in ascending order. A rearrangement $j_1 j_2 ... j_n$ of the elements of S is called a permutation of S.

The set of all permutations of $S =: S_n$ The number permutations of $S_n = n!$

Definition (Inversion)

A permutation $j_1 j_2 \dots j_n$ is aid to have an inversion if a larger integer, j_r , precedes a smaller one, j_s .

If the total number of inversions is even \Rightarrow a permutation is called even. If the total number of inversions is odd \Rightarrow a permutation is called odd. There exists $\frac{n!}{2}$ even and $\frac{n!}{2}$ odd permutations in S_n .

イロン イ理と イヨン イヨン

Definition (Determinant)

Let $A = [a_{ij}]$ be an $n \times n$ matrix. The determinant function is defined by

$$\det (A) = \sum_{j_1 j_2 \dots j_n \in S_n} (\pm) a_{1j_1} a_{2j_2} \dots a_{nj_n}.$$

(If the permutation $j_1 j_2 ... j_n$ is even, then the sign is taken +, otherwise -)

Example

Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 and $S_2 = \{12, 21\}$.
$$\det(A) = \sum_{j_1 j_2 \in S_2} (\pm) a_{1j_1} a_{2j_2} = a_{11} a_{22} - a_{12} a_{21}.$$

< 注入 < 注入

Let A be an $n \times n$ matrix.

- $earline (A_{kr_i \to r_i}) = k \det (A)$
- det $(A) = \det (A^T)$
- **(3)** If two rows(columns) of A are equal \Rightarrow det (A) = 0
- If A consists a zero row(column) $\Rightarrow \det(A) = 0$
- If A is upper(lower) triangular matrix⇒ det (A) = a₁₁a₂₂...a_{nn} (det (I_n) = 1)

If A is an $n \times n$ nonsingular matrix $\Leftrightarrow \det(A) \neq 0$.

Corollary

- Ax = b has a unique solution $\Leftrightarrow \det(A) \neq 0$.
- **2** Ax = 0 has a nontrivial solution $\Leftrightarrow \det(A) = 0$.
- If A is $n \times n$ nonsingular matrix $\Leftrightarrow \det (A^{-1}) = \frac{1}{\det(A)}$.

Now we show an another method to evaluate the determinant of an $n \times n$ matrix A.

Definition (Minor)

Let $A = [a_{ij}]$ be an $n \times n$ matrix. The minor of a_{ij} is defined as det (M_{ij}) , where M_{ij} is $(n-1) \times (n-1)$ submatrix of A obtained by deleting the *i*-th row and *j*-th column of A.

Definition (Cofactor)

Let $A = [a_{ij}]$ be an $n \times n$ matrix. The cofactor of a_{ij} is defined as $A_{ij} = (-1)^{i+j} \det(M_{ij})$.

Let
$$A = [a_{ij}]$$
 be an $n \times n$ matrix. Then

$$det (A) = \sum_{j=1}^{n} a_{ij} A_{ij} \text{ (expansion of det (A) along the i-th row)}$$
$$det (A) = \sum_{i=1}^{n} a_{ij} A_{ij} \text{ (expansion of det (A) along the j-th column)}$$

Remark: It is useful to expand along the row (column) which has more zero.

Image: Image:

E

∃ ► < ∃ ►</p>

Example

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -3 \\ 1 & -1 & 1 \end{bmatrix}$$
. If we expand det (A) along the 1st row, we get
det (A) = $a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$
= $1(-1)^{1+1} \begin{vmatrix} 1 & -3 \\ -1 & 1 \end{vmatrix} + 2(-1)^{1+2} \begin{vmatrix} 2 & -3 \\ 1 & 1 \end{vmatrix}$
+ $3(-1)^{1+3} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix}$
= -21 .

2

イロト イ団ト イヨト イヨト

Applications of determinants: Finding inverse of a matrix

Now we show another method for finding inverse of a nonsingular matrix.

Definition (Adjoint)

Let $A = [a_{ij}]$ be an $n \times n$ matrix. The adjoint of A is defined as

$$ndj(A) = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}$$

where A_{ji} is the cofactor of a_{ji} .

Theorem

If
$$A = [a_{ij}]$$
 be an $n \times n$ matrix and det $(A) \neq 0$, then $A^{-1} = \frac{1}{\det(A)} adj (A)$.

()

< 🗗 🕨

Example

Consider the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -3 \\ 1 & -1 & 1 \end{bmatrix}$$
. Find A^{-1} , if it exists.

Solution: Since det $(A) = -21 \neq 0$, the matrix A has an inverse. If we evaluate the matrix adj(A), we have

$$\begin{array}{rcl} \mathcal{A}^{-1} & = & \displaystyle \frac{1}{\det\left(\mathcal{A}\right)} adj\left(\mathcal{A}\right) \\ & = & \displaystyle \frac{-1}{21} \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} \frac{2}{21} & \frac{5}{21} & \frac{9}{21} \\ \frac{5}{21} & \frac{2}{21} & -\frac{9}{21} \\ \frac{3}{21} & -\frac{3}{21} & \frac{3}{21} \end{bmatrix} , \end{array}$$

• • = • • = •

Consider the linear system of n equations in n unknowns,

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_1$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

Let A be the coefficient matrix of given linear system. If det $(A) \neq 0$, then the linear system has a unique solution as

$$x_1 = \frac{\det(A_1)}{\det(A)}, x_2 = \frac{\det(A_2)}{\det(A)}, \dots, x_n = \frac{\det(A_n)}{\det(A)},$$

where A_i is the matrix otained from A by replacing i-th column of A by b.

A B > A B >

Image: Image:

Applications of determinants: Cramer's rule

Example

Consider the linear system

$$\begin{array}{rcl} x_1 + 2x_2 + 3x_3 &=& 5\\ 2x_1 + x_2 - 3x_3 &=& 1\\ x_1 - x_2 + x_3 &=& 3. \end{array}$$

Since det $(A) = -21 \neq 0$, the linear system has unique solution, and the solutions can be obtained by using Cramer's rule as:

$$x_{1} = \frac{\det(A_{1})}{\det(A)} = \frac{\begin{vmatrix} 5 & 2 & 3 \\ 1 & 1 & -3 \\ 3 & -1 & 1 \end{vmatrix}}{-21} = 2,$$

Applications of determinants: Cramer's rule

Example

$$x_{2} = \frac{\det(A_{2})}{\det(A)} = \frac{\begin{vmatrix} 1 & 5 & 3 \\ 2 & 1 & -3 \\ 1 & 3 & 1 \end{vmatrix}}{-21} = 0,$$

$$x_{3} = \frac{\det(A_{3})}{\det(A)} = \frac{\begin{vmatrix} 1 & 2 & 5 \\ 2 & 1 & 1 \\ 1 & -1 & 3 \end{vmatrix}}{-21} = 1.$$

3 🕨 🖌 3