Lecture 4: Determinants

Elif Tan
Ankara University

Determinants

Definition (Permutation)

Let $S=\{1,2, \ldots, n\}$ be a set of integers, arranged in ascending order. A rearrangement $j_{1} j_{2} \ldots j_{n}$ of the elements of S is called a permutation of S.

The set of all permutations of $S=: S_{n}$
The number permutations of $S_{n}=n$!

Definition (Inversion)

A permutation $j_{1} j_{2} \ldots j_{n}$ is aid to have an inversion if a larger integer, j_{r}, precedes a smaller one, j_{s}.

If the total number of inversions is even \Rightarrow a permutation is called even. If the total number of inversions is odd \Rightarrow a permutation is called odd. There exists $\frac{n!}{2}$ even and $\frac{n!}{2}$ odd permutations in S_{n}.

Determinants

Definition (Determinant)

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. The determinant function is defined by

$$
\operatorname{det}(A)=\sum_{j_{1} j_{2} \ldots j_{n} \in S_{n}}(\pm) a_{1 j_{1}} a_{2 j_{2}} \ldots a_{n j_{n}} .
$$

(If the permutation $j_{1} j_{2} \ldots j_{n}$ is even, then the sign is taken + , otherwise -)

Example

Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ and $S_{2}=\{12,21\}$.

$$
\operatorname{det}(A)=\sum_{j_{1} j_{2} \in S_{2}}(\pm) a_{1 j_{1}} a_{2 j_{2}}=a_{11} a_{22}-a_{12} a_{21}
$$

Properties of determinants

Theorem

Let A be an $n \times n$ matrix.
(1) $\operatorname{det}\left(A_{r_{i} \leftrightarrow r_{j}}\right)=-\operatorname{det}(A)$
(2) $\operatorname{det}\left(A_{k r_{i} \rightarrow r_{i}}\right)=k \operatorname{det}(A)$
(3) $\operatorname{det}\left(A_{k r_{i}+r_{j} \rightarrow r_{j}}\right)=\operatorname{det}(A)$
(9) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
(5) If two rows(columns) of A are equal $\Rightarrow \operatorname{det}(A)=0$
(0) If A consists a zero row(column) $\Rightarrow \operatorname{det}(A)=0$
(1) If A is upper(lower) triangular matrix $\Rightarrow \operatorname{det}(A)=a_{11} a_{22} \ldots a_{n n}$ $\left(\operatorname{det}\left(I_{n}\right)=1\right)$
(3) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$

Properties of determinants

Theorem

If A is an $n \times n$ nonsingular matrix $\Leftrightarrow \operatorname{det}(A) \neq 0$.

Corollary

(1) $A x=b$ has a unique solution $\Leftrightarrow \operatorname{det}(A) \neq 0$.
(2) $A x=0$ has a nontrivial solution $\Leftrightarrow \operatorname{det}(A)=0$.
(3) If A is $n \times n$ nonsingular matrix $\Leftrightarrow \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Cofactor Expansion

Now we show an another method to evaluate the determinant of an $n \times n$ matrix A.

Definition (Minor)

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. The minor of $a_{i j}$ is $\operatorname{defined}$ as $\operatorname{det}\left(M_{i j}\right)$, where $M_{i j}$ is $(n-1) \times(n-1)$ submatrix of A obtained by deleting the i-th row and j-th column of A.

Definition (Cofactor)

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. The cofactor of $a_{i j}$ is defined as $A_{i j}=(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)$.

Cofactor Expansion

Theorem

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. Then

$$
\begin{aligned}
& \operatorname{det}(A)=\sum_{j=1}^{n} a_{i j} A_{i j} \text { (expansion of } \operatorname{det}(A) \text { along the } i \text {-th row) } \\
& \operatorname{det}(A)=\sum_{i=1}^{n} a_{i j} A_{i j} \text { (expansion of } \operatorname{det}(A) \text { along the } j \text {-th column) }
\end{aligned}
$$

Remark: It is useful to expand along the row (column) which has more zero.

Cofactor Expansion

Example

Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & -3 \\ 1 & -1 & 1\end{array}\right]$. If we expand $\operatorname{det}(A)$ along the 1 st row, we get

$$
\begin{aligned}
\operatorname{det}(A)= & a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13} \\
= & 1(-1)^{1+1}\left|\begin{array}{cc}
1 & -3 \\
-1 & 1
\end{array}\right|+2(-1)^{1+2}\left|\begin{array}{cc}
2 & -3 \\
1 & 1
\end{array}\right| \\
& +3(-1)^{1+3}\left|\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right| \\
= & -21 .
\end{aligned}
$$

Applications of determinants: Finding inverse of a matrix

Now we show another method for finding inverse of a nonsingular matrix.

Definition (Adjoint)

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. The adjoint of A is defined as

$$
\operatorname{adj}(A)=\left[\begin{array}{cccc}
A_{11} & A_{21} & \cdots & A_{n 1} \\
A_{12} & A_{22} & \cdots & A_{n 2} \\
\vdots & \vdots & & \vdots \\
A_{1 n} & A_{2 n} & \cdots & A_{n n}
\end{array}\right]
$$

where $A_{j i}$ is the cofactor of $a_{j i}$.

Theorem

If $A=\left[a_{i j}\right]$ be an $n \times n$ matrix and $\operatorname{det}(A) \neq 0$, then
$A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.

Applications of determinants: Finding inverse of a matrix

Example

Consider the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & -3 \\ 1 & -1 & 1\end{array}\right]$. Find A^{-1}, if it exists.
Solution: Since $\operatorname{det}(A)=-21 \neq 0$, the matrix A has an inverse. If we evaluate the matrix $\operatorname{adj}(A)$, we have

$$
\begin{aligned}
A^{-1} & =\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A) \\
& =\frac{-1}{21}\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{2}{21} & \frac{5}{21} & \frac{9}{21} \\
\frac{5}{21} & \frac{2}{21} & -\frac{9}{21} \\
\frac{3}{21} & -\frac{3}{21} & \frac{3}{21}
\end{array}\right] .
\end{aligned}
$$

Applications of determinants: Cramer's rule

Theorem

Consider the linear system of n equations in n unknowns,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}= & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}= & b_{1} \\
& \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}= & b_{n} .
\end{aligned}
$$

Let A be the coefficient matrix of given linear system. If $\operatorname{det}(A) \neq 0$, then the linear system has a unique solution as

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \ldots, x_{n}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)},
$$

where A_{i} is the matrix otained from A by replacing i-th column of A by b.

Applications of determinants: Cramer's rule

Example

Consider the linear system

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}=5 \\
2 x_{1}+x_{2}-3 x_{3}=1 \\
x_{1}-x_{2}+x_{3}=3 .
\end{array}
$$

Since $\operatorname{det}(A)=-21 \neq 0$, the linear system has unique solution, and the solutions can be obtained by using Cramer's rule as:

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}=\frac{\left|\begin{array}{ccc}
5 & 2 & 3 \\
1 & 1 & -3 \\
3 & -1 & 1
\end{array}\right|}{-21}=2
$$

Applications of determinants: Cramer's rule

Example

$$
\begin{aligned}
& x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}=\frac{\left|\begin{array}{ccc}
1 & 5 & 3 \\
2 & 1 & -3 \\
1 & 3 & 1
\end{array}\right|}{-21}=0 \\
& x_{3}=\frac{\operatorname{det}\left(A_{3}\right)}{\operatorname{det}(A)}=\frac{\left|\begin{array}{ccc}
1 & 2 & 5 \\
2 & 1 & 1 \\
1 & -1 & 3
\end{array}\right|}{-21}=1
\end{aligned}
$$

