Lecture 5: Real Vector Spaces

Elif Tan

Ankara University

Real Vector Spaces

- A vector in the plane is a 2×1 matrix (2-vector)

$$
x=\left[\begin{array}{l}
x \\
y
\end{array}\right] ; x, y \in \mathbb{R}
$$

- A vector in the space is a 3×1 matrix (3-vector)

$$
x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; x, y, z \in \mathbb{R} \text {. }
$$

- We also represent a vector in the plane as a directed line segment for physical applications. In \mathbb{R}^{2}, for each vector $\left[\begin{array}{l}x \\ y\end{array}\right]$, there is a corresponding point (x, y), and for each point (x, y), there is a unique vector $\left[\begin{array}{l}x \\ y\end{array}\right]$. In algebraically, all these representations behave in a same manner.

Real Vector Spaces

Definition (Real Vector Space)

A real vector space is a set of V of elements on which have two operations \oplus and \odot satisfy the following properties:

- $\oplus: V \times \underset{(u, v) \longrightarrow u \oplus v}{V} \forall u, v \in V, u \oplus v \in V$.
(1) $\forall u, v \in V, u \oplus v=v \oplus u$
(2) $\forall u, v, w \in V, u \oplus(v \oplus w)=(u \oplus v) \oplus w$
(3) For any $u \in V, \exists 0 \in V ; u \oplus 0=0 \oplus u=u$
(9) For each $u \in V, \exists-u \in V ; u \oplus-u=-u \oplus u=0$.

Real Vector Spaces

Definition

- $\odot: \mathbb{R} \times \underset{(c, u)}{V} \underset{\rightarrow c \odot u}{\longrightarrow V} \forall u \in V, \forall c \in \mathbb{R}, c \odot u \in V$.
(1) $\forall u, v \in V, \forall c \in \mathbb{R}, c \odot(u \oplus v)=c \odot u \oplus c \odot v$
(2) $\forall u \in V, \forall c, d \in \mathbb{R},(c+d) \odot u=c \odot u \oplus d \odot u$
(3) $\forall u \in V, \forall c, d \in \mathbb{R}, c \odot(d \odot u)=(c . d) \odot u$
(4) $\forall u \in V, 1 \in \mathbb{R}, 1 \odot u=u$.

Real Vector Spaces

- We denote (V, \oplus, \odot) is a real vector space.
- The elements of (V, \oplus, \odot) are called as vectors.
- The elements of \mathbb{R} are called as scalars.
- The operations \oplus and \odot are called as vector additon and scalar multilication, respectively.
- Note that the inverse of a vector is unique.

Examples

$\left(\mathbb{R}^{n}, \oplus, \odot\right)$ is a real vector space.
$(\mathbb{R},+,$.$) is a real vector space.$
$\left(\mathbb{R}^{+},+,.\right)$is not a real vector space, because the identity element of the operation + doesn't exist.

Real Vector Spaces

Theorem

Let (V, \oplus, \odot) be a real vector space. For $u \in V$ and $c \in \mathbb{R}$, (i) $0 \odot u=0$
(ii) $c \odot 0=0$
(iii) $c \odot u=0 \Rightarrow c=0 \vee u=0$
(iv) $(-1) \odot u=-u$.

Subspaces

Definition (Subspace)

Let (V, \oplus, \odot) be a real vector space and $\varnothing \neq W \subset V$. If W is a real vector space with the operations in V, then W is called a subspace of V $(W<V)$.

To verify that a subset W of a vector sace V is a subspace, it is enough to check the following conditions.

Theorem

Let (V, \oplus, \odot) be a real vector space and $\varnothing \neq W \subset V$. Then

$$
W<V \Longleftrightarrow \begin{aligned}
& \text { (i) } \forall u, v \in W, u \oplus v \in W \\
& \text { (ii) } \forall u \in W, \forall c \in \mathbb{R}, c \odot u \in W
\end{aligned}
$$

Subspaces

Example

$V:=\mathbb{R}^{3}$ is a real vector space with the standart operations \oplus and \odot.

$$
\begin{aligned}
& W_{1}:=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; x+z=0\right\}<V . \\
& W_{2}:=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; x+z=7\right\} \nless V .
\end{aligned}
$$

