Lecture 8: Linear Transformations

Elif Tan

Ankara University

Linear Transformations

Definition (Coordinate)

Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an ordered basis for the n-dimensional vector space (V, \oplus, \odot). Then every vector v in V can be uniquely expressed in the form

$$
v=a_{1} \odot v_{1} \oplus a_{2} \odot v_{2} \oplus \ldots \oplus a_{n} \odot v_{n}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are scalars. The coordinate vector of v with respect to the ordered basis S is defined by

$$
[v]_{S}:=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

The entries of $[v]_{S}$ are called the coordinates of v with respect to the basis S. Note that there is a one-to-one correspondence between v and $[v]_{S}$.

Linear Transformations

Definition (Transition Matrix)

Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $T=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be an ordered basis for the n-dimensional vector space (V, \oplus, \odot). The transition matrix from the basis T to S is defined by

$$
P_{S \leftarrow T}=\left[\left[w_{1}\right]_{S}\left[w_{2}\right]_{S} \ldots\left[w_{n}\right]_{S}\right]_{n \times n}
$$

and the coordinate vector of v wrt S can be written as

$$
[v]_{S}=P_{S \leftarrow T}[v]_{T}
$$

Note that the transition matrix is nonsingular matrix and we have

$$
P_{S \leftarrow T}^{-1}=P_{T \leftarrow S} .
$$

Linear Transformations

Example

Consider the ordered basis for \mathbb{R}^{3}

$$
S=\left\{v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

and

$$
T=\left\{w_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], w_{2}=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right], w_{3}=\left[\begin{array}{c}
3 \\
-3 \\
1
\end{array}\right]\right\} .
$$

Find the transition matrix from the basis T to S.

Linear Transformations

Solution:

$$
\begin{aligned}
w_{1}= & a_{1} \odot v_{1} \oplus a_{2} \odot v_{2} \oplus a_{3} \odot v_{3} \Rightarrow\left[w_{1}\right]_{S}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \\
w_{2}= & b_{1} \odot v_{1} \oplus b_{2} \odot v_{2} \oplus b_{3} \odot v_{3} \Rightarrow\left[w_{2}\right]_{S}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right] \\
w_{3}= & c_{1} \odot v_{1} \oplus c_{2} \odot v_{2} \oplus c_{3} \odot v_{3} \Rightarrow\left[w_{3}\right]_{S}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-3 \\
1
\end{array}\right] \\
& P_{S \leftarrow T}=\left[\left[w_{1}\right]_{S}\left[w_{2}\right]_{S}\left[w_{3}\right]_{S}\right]_{3 \times 3}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & -3 \\
1 & -1 & 1
\end{array}\right] .
\end{aligned}
$$

Linear Transformations

Definition (Linear Transformation)

Let (V, \oplus, \odot) and (W, \boxplus, \odot) be real vector spaces. $L: V \rightarrow W$ is called a linear transformation if the following conditions hols:

$$
\begin{aligned}
& \text { (i) } \forall u, v \in V, L(u \oplus v)=L(u) \boxplus L(v) \\
& \text { (ii) } \forall u \in V, \forall c \in \mathbb{R}, L(c \odot u)=c \boxtimes L(u) .
\end{aligned}
$$

Linear Transformations

Definition

A linear transformation $L: V \rightarrow W$ is called one-to-one if $L\left(v_{1}\right)=L\left(v_{2}\right)$ implies that $v_{1}=v_{2}$ for $v_{1}, v_{2} \in V$.
A linear transformation $L: V \rightarrow W$ is called onto if for each $w \in W, \exists v \in V$ such that $L(v)=w$.

Linear Transformations

Definition

Let $L: V \rightarrow W$ be a linear transformation. The kernel of L is defined by

$$
K e r L=\left\{v \in V \mid L(v)=0_{w}\right\}
$$

The range of L is defined by

$$
\text { Range } L=L(V)=\{w \in W \mid \exists v \in V ; L(v)=w\}
$$

Linear Transformations

Theorem

Let $L: V \rightarrow W$ be a linear transformation. Then we have the following results:
(1) $L(0 v)=0_{w}$
(2) $K e r L<V$
(3) L is one-to-one $\Leftrightarrow \operatorname{KerL}=\{0 v\}$
(1) Range $L<W$
(6) L is onto $\Leftrightarrow L(V)=W$.

Linear Transformations

Theorem
Let $L: V \rightarrow W$ be a linear transformation with $\operatorname{dim} V=n$, then

$$
\operatorname{dim} V=\operatorname{dim} K e r L+\operatorname{dim} \text { RangeL. }
$$

Note that dim RangeL is called as "rank" of L and dim KerL is called as "nullity" of L.

Linear Transformations

Example

Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, L\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{l}x_{1}+2 x_{2}+3 x_{3} \\ 2 x_{1}+x_{2}-3 x_{3}\end{array}\right]$ be a linear transformation. Find the rank of L.

Solution:

$$
\begin{aligned}
\text { KerL } & =\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, L\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=0_{w}\right\} \\
& =\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{R}^{3} \left\lvert\,\left[\begin{array}{l}
x_{1}+2 x_{2}+3 x_{3} \\
2 x_{1}+x_{2}-3 x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right.\right\} \\
& =\left\{\left.\left[\begin{array}{c}
3 x_{3} \\
-3 x_{3} \\
x_{3}
\end{array}\right] \right\rvert\, x_{3} \in \mathbb{R}\right\}
\end{aligned}
$$

Linear Transformations

Thus $\left\{\left[\begin{array}{c}3 \\ -3 \\ 1\end{array}\right]\right\}$ is a basis for $K e r L$ and $\operatorname{dim} K e r L=1$. Since

$$
\operatorname{dim} V=\operatorname{dim} K e r L+\operatorname{dim} \text { RangeL }
$$

then we have

$$
3=1+\text { rankL. }
$$

Therefore $\operatorname{rankL}=2$.

Linear Transformations

Definition (Isomorphism)

Let (V, \oplus, \odot) and (W, \boxplus, \boxtimes) be real vector spaces. L is called an ismorphism if $L: V \rightarrow W$ is a linear transformation that is one-to-one and onto. We show it as $V \cong W$.

Linear Transformations

Theorem

(1) Let V be an n-dimensional vector space. Then $V \cong \mathbb{R}^{n}$.
(2) Let V and W be finite dimensional vector spaces. $V \cong W \Leftrightarrow \operatorname{dim} V=\operatorname{dim} W$.

