Lecture 12: Inner Product Spaces

Elif Tan

Ankara University

Inner Product Spaces

Definition (Inner Product Space)

Let (V, \oplus, \odot) be a real vector space. If the function $\langle\rangle:, V \times V \rightarrow \mathbb{R}$ satisfies the following properties, then V is called an inner product space and the function \langle,$\rangle is called an inner product function.$
(i) $\forall u \in V,\langle u, u\rangle \geq 0$ and $\langle u, u\rangle=0 \Leftrightarrow u=0$
(ii) $\forall u, v \in V,\langle u, v\rangle=\langle v, u\rangle$
(iii) $\forall u, v, w \in V,\langle u \oplus v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$
(iv) $\forall u, v \in V, \forall c \in \mathbb{R},\langle c \odot u, v\rangle=c\langle u, v\rangle$.

Inner Product Spaces

Example

For $u=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right], v=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbb{R}^{n}$, the standard inner product (dot
product) on \mathbb{R}^{n} is defined by

$$
\langle u, v\rangle=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} .
$$

Inner Product Spaces

Theorem

Let V be an inner product space, and $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be an ordered basis for the vector space V. Then the matrix $A=\left[a_{i j}\right]_{n \times n}, a_{i j}:=\left\langle a_{i}, a_{j}\right\rangle$ is a symmetric matrix, and for every $u, v \in V$, it determines $\langle u, v\rangle$.

Note that the matrix $A=\left[a_{i j}\right]_{n \times n}, a_{i j}=\left\langle u_{i}, u_{j}\right\rangle$ is called the matrix of the inner product with respect to the ordered basis S.

$$
A=\left[\begin{array}{cccc}
\left\langle u_{1}, u_{1}\right\rangle & \left\langle u_{1}, u_{2}\right\rangle & \cdots & \left\langle u_{1}, u_{n}\right\rangle \\
\left\langle u_{2}, u_{1}\right\rangle & \left\langle u_{2}, u_{2}\right\rangle & \cdots & \left\langle u_{2}, u_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle u_{n}, u_{1}\right\rangle & \left\langle u_{n}, u_{2}\right\rangle & \cdots & \left\langle u_{n}, u_{n}\right\rangle
\end{array}\right]
$$

Inner Product Spaces

Definition (Positive definite matrix)

The $n \times n$ symmetric matrix A is called positive definite matrix if it has the property that

$$
\forall 0 \neq x \in \mathbb{R}^{n}, x^{\top} A x>0
$$

Theorem

Let $A=\left[a_{i j}\right]_{n \times n}$ be a positive definite matrix, and $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be an ordered basis for the vector space V. Then the function
$\langle\rangle:, V \times V \rightarrow \mathbb{R}$ that is defined by $\forall u, v \in V,\langle u, v\rangle:=[u]_{S}^{T} A[v]_{S}$, is an inner product function on V.

Note that it is not easy to determine when a symmetric matrix is positive definite!

Inner Product Spaces

Example

Consider the standard inner product function $\left\langle\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle=a c+b d$ on \mathbb{R}^{2}. The matrix of the inner product with respect to the ordered basis $S=\left\{u_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], u_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is

$$
A=\left[\begin{array}{ll}
\left\langle u_{1}, u_{1}\right\rangle & \left\langle u_{1}, u_{2}\right\rangle \\
\left\langle u_{2}, u_{1}\right\rangle & \left\langle u_{2}, u_{2}\right\rangle
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Conversely, consider the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] .(A$ is positive definite matrix, verify it). The inner product with respect to the ordered standard basis in \mathbb{R}^{2} is

$$
\left\langle\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right\rangle=\left[\begin{array}{ll}
a & b
\end{array}\right] A\left[\begin{array}{l}
c \\
d
\end{array}\right]=a c+b d
$$

Inner Product Spaces

Definition (Lenght)

Let V be an inner product space. The lenght of $v \in V$ is defined by

$$
\|v\|=\sqrt{\langle v, v\rangle}
$$

Definition (Distance)

Let V be an inner product space. The distance between u and v in V is defined by

$$
d(u, v):=\|u-v\|=\sqrt{\langle u-v, u-v\rangle} .
$$

Inner Product Spaces

Theorem (Cauchy-Schwarz Inequality)
Let V be an inner product space. $\forall u, v \in V$,

$$
|\langle v, v\rangle| \leq\|u\|\|v\| .
$$

By using Cauchy-Schwarz inequality, we define the cosine of an angle between nonzero vectors u and v in V as

$$
\cos \theta:=\frac{\langle v, v\rangle}{\|u\|\|v\|}, 0 \leq \theta \leq \pi
$$

Inner Product Spaces

Corollary

Let V be an inner product space. Then $\forall u, v \in V$ and $\forall c \in \mathbb{R}$,
(1) $\|c \odot v\| \leq|c|\|v\|$
(2) $d(u, v)=0 \Leftrightarrow u=v$
(3) $d(u, v)=d(v, u)$
(9) $\|u \oplus v\| \leq\|u\|+\|v\|$ (Triangle inequality).

Inner Product Spaces

Definition

Let V be an inner product space. The vectors u and v in V are orthogonal if $\langle v, v\rangle=0$. That is,

$$
u \perp v \Leftrightarrow\langle v, v\rangle=0
$$

A set of S of vectors in V is called ortogonal if any two distinct vectors in S are orthogonal. Additionally, if each vector in S is a unit vector $(\|u\|=1, u \in V)$, then S is called orthonormal.

Inner Product Spaces

Theorem

(1) Zero vector is orthogonal with every vector in an inner product space V, that is, $0 \perp v, \forall v \in V$.
(2) If $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is an orthogonal set of nonzero vectors in an inner product space V, then S is linearly independent.

