Models with Linear Algebraic

Equations (Material balances with and without chemical reactions)

- Plant wide or section wide mass balances are accomplish with design stage or later during operation for keeping material audit. Typical example are shown as:

EXAMPLE 1

Recovery of acetone from acetone -air mixture is obtained using an absorber and a flash separator which is single equilibrium stage (Figure).

A model for this system is developed under following assumption

- Air entering the absorber contains no water vapor
- Air leaving the absorber contains 6 mass \% water vapor
- All acetone is absorbed in water

$$
y=20.5 x
$$

Figure . Flash Drum: Schematic Diagram
Where y mass fraction of the acetone in the vapor stream and x mass fraction of the acetone in the liquid stream (flash separator).

Operating conditions of the process are as follows

- Air in flow: $800 \mathrm{lb} / \mathrm{hr}$ with 10 mass \% acetone
- Water flow rate: $400 \mathrm{lb} / \mathrm{hr}$

Mass Balance for air, aseton and water respectively

$$
\begin{aligned}
& 0.9 * \text { Air }=0.94 \mathrm{Ao} \\
& 0.1 \mathrm{Ai}=0.04 \mathrm{~L}+\mathrm{yV} \\
& \text { Water }=0.06 \mathrm{Ao}+(1-y) \mathrm{V}+0.96 \mathrm{~L}
\end{aligned}
$$

$$
\text { Design requirement : } x=0.04 \text {; Equilibrium Relation: } y=20.5 x ; \Rightarrow y
$$

$$
=20.5 \times 0.04=0.82
$$

Substituting for all the known values and rearranging, we have the above model is a typical example of system of linear algebraic equations, which have to be solved simultaneously. $A x=b$; where x and b are $a(n \times 1)$ vectors (i.e. $x, b \in R n)$ and A is $a(n \times n)$ matrix.
>> A=[0.94 $000 ; 00.040 .82 ; 0.060 .960 .18]$

```
A =
    0.9400 0 0
        0}0.0400\quad0.820
    0.0600 0.9600 0.1800
>> B=[0.9*800;0.1*800;400]
B =
    7 2 0
    80
    4 0 0
>> x=inv(A)*B
x =
765.9574
353.7370
    80.3055
```


EXAMPLE 2

irreversible reaction $\mathrm{A} \rightarrow \mathrm{B}$

$$
\mathrm{r}_{\mathrm{A}}=\mathrm{k} \cdot \mathrm{C}_{\mathrm{A}}
$$

$$
\mathrm{k}=3 \times 10^{5} \exp \left(\frac{-4200}{\mathrm{~T}}\right) \quad \mathrm{k}[=] \frac{1}{\mathrm{~h}} \quad \mathrm{~T}[=] \mathrm{K}
$$

Reactor no	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Volume (L)
1	45	700
2	60	1000
3	70	1100

Stream no	Volumetric flowrate (L/h)
1	500
6	200

Determine the concentration of species of A in each reactor if the feed to the first reactor contains 1 $\mathrm{mol} / \mathrm{L}$ of A .

Finding flow rates, using total mass balance

Stream no	1	2	3	4	5	6
Flowrates, L/h	500	700	700	700	500	200

$$
\begin{gathered}
Q_{1}=Q_{5} \\
Q_{5}+Q_{6}=Q 4 \\
Q_{1}+Q_{6}=Q_{2} \\
Q_{2}=Q_{3}=Q_{4}
\end{gathered}
$$

$$
\begin{aligned}
& k_{1}=3 \times 10^{5} \exp \left(\frac{-4200}{45+273}\right)=0.551 h^{-1} \\
& k_{2}=3 \times 10^{5} \exp \left(\frac{-4200}{60+273}\right)=0.999 h^{-1} \\
& k_{3}=3 \times 10^{5} \exp \left(\frac{-4200}{70+273}\right)=1.443 h^{-1}
\end{aligned}
$$

Mass Balance:

$$
Q_{1} C_{A 0}+Q_{6} C_{A 3}-k_{1} C_{A 1} V_{1}=0
$$

Tank 1

Tank 2

$$
Q_{2} C_{A 1}-Q_{3} C_{A 2}-k_{2} C_{A 2} V_{2}=0
$$

Tank 3

$$
Q_{3} C_{A 2}-Q_{4} C_{A 3}-k_{3} C_{A 3} V_{3}=0
$$

$$
1.3801 \text { (CA1) }
$$

$$
0.5686 \text { (CA2) }
$$

$$
0.1740 \text { (CA3) }
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-385.7 & 0 & 200 \\
700 & -1699 & 0 \\
0 & 700 & -2287.3
\end{array}\right]\left[\begin{array}{c}
C_{A 1} \\
C_{A 2} \\
C_{A 3}
\end{array}\right]=\left[\begin{array}{c}
-500 \\
0 \\
0
\end{array}\right] \quad \begin{array}{l}
\gg \mathrm{a}=\left[\begin{array}{ll}
-387.50200 ; 700-1699 & 0 ; 0700-2287.3
\end{array}\right] \\
\gg \mathrm{b}=\left[\begin{array}{ccc}
-500 ; 0 ; 0
\end{array}\right] \\
\gg \mathrm{x}=\operatorname{inv}(\mathrm{a}) * \mathrm{~b}
\end{array}} \\
& x=
\end{aligned}
$$

