Method of separation variables (İ.Tosun, Modeling in Transport Phenomena, Elsevier, 2007)

Example :

Consider a rectangular slab of thickness 2 L as shown in figure. Initally the concentration of A within the slab is uniform at a value of C_{Ao}. At $\mathrm{t}=0$ the surfaces at $\mathrm{z}= \pm \mathrm{L}$ are exposed to a fluid having a constant concentration of $\mathrm{C}_{\mathrm{A} \infty}$. Let us assume $\mathrm{Bimass}>40$ so that resistance to mass transfer in the fluid phase is negligible and the concentration at the slab surfaces are almost equal to $\mathrm{C}_{\mathrm{A} \infty}$.

Introduce dimensionless quantities:
dimensionless concentration $\quad \theta=\frac{\mathrm{C}_{\mathrm{A} \infty}-\mathrm{C}_{\mathrm{A}}}{\mathrm{C}_{\mathrm{A} \infty}-\mathrm{C}_{\mathrm{Ao}}}$
$\begin{array}{ll}\text { dimensionless location } & \xi=\frac{\mathrm{z}}{\mathrm{L}} \\ \text { dimensionless time } & \tau=\frac{\mathrm{tD} \mathrm{D}_{\mathrm{AB}}}{\mathrm{L}^{2}}\end{array}$
a) Derive the differential equation expressing the system and write initial and boundary conditions.
b) Solve the dimensionless equation by separation of variables

NOTE: If $\cos (\lambda)=0$ then, $\lambda n=\left(n+\frac{1}{2}\right) \pi ; A_{n}=\frac{2(-1)^{n}}{\left(n+\frac{1}{2}\right) \pi}$

Solution

a) $\left.\mathrm{N}_{\mathrm{A}} \mathrm{HW}\right|_{\mathrm{Z}}-\left.\mathrm{N}_{\mathrm{A}} \mathrm{HW}\right|_{\mathrm{z}+\Delta \mathrm{z}}=\frac{\partial}{\partial \mathrm{t}}\left(\mathrm{C}_{\mathrm{A}} \cdot V\right) ; \quad \mathrm{V}=\mathrm{H} . \mathrm{W} \cdot \Delta \mathrm{z}$
$\left.\mathrm{N}_{\mathrm{A}} \cdot \mathrm{H} \cdot \mathrm{W}\right|_{\mathrm{z}}-\left.\mathrm{N}_{\mathrm{A}} \cdot \mathrm{H} \cdot \mathrm{W}\right|_{\mathrm{z}+\Delta \mathrm{z}}=$ H.W. $\Delta \mathrm{z} \frac{\partial \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{t}}$
divide by H.W. $\Delta \mathrm{z}$ and $\lim \Delta \mathrm{z} \rightarrow 0$,
$-\frac{\partial\left(\mathrm{N}_{\mathrm{A}}\right)}{\partial \mathrm{z}}=\frac{\partial \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{t}}$
$\mathrm{N}_{\mathrm{A}}=-\mathrm{D}_{\mathrm{AB}} \frac{\partial \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{z}}$
$\mathrm{D}_{\mathrm{AB}} \frac{\partial^{2} \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{z}^{2}}=\frac{\partial \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{t}}$
IC: $\quad t=0 \quad C_{A}=C_{A o}$
BC1: $\mathrm{z}=\mathrm{L} \quad \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A}}{ }^{\infty}$
BC2: $\mathrm{z}=-\mathrm{L} \quad \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A}}{ }^{\infty}$
b) dimensionless concentration

$$
\theta=\frac{\mathrm{C}_{\mathrm{A} \infty}-\mathrm{C}_{\mathrm{A}}}{\mathrm{C}_{\mathrm{A} \infty}-\mathrm{C}_{\mathrm{Ao}}} \quad \partial \theta=-\frac{1}{\mathrm{C}_{\mathrm{A} \infty}-\mathrm{C}_{\mathrm{Ao}}} \partial \mathrm{C}_{\mathrm{A}}
$$

$$
\partial \mathrm{C}_{\mathrm{A}}=-\left(\mathrm{C}_{\mathrm{A} \propto}-\mathrm{C}_{\mathrm{Ao}}\right) \partial \theta
$$

dimensionless location

$$
\xi=\frac{\mathrm{z}}{\mathrm{~L}} \quad \partial \xi=\frac{1}{\mathrm{~L}} \partial \mathrm{z} \quad \partial \mathrm{z}=\mathrm{L} \partial \xi
$$

dimensionless time

$$
\tau=\frac{\mathrm{tD}_{\mathrm{AB}}}{\mathrm{~L}^{2}} \quad \partial \tau=\frac{\mathrm{D}_{\mathrm{AB}}}{\mathrm{~L}^{2}} \partial \mathrm{t} \quad \partial \mathrm{t}=\frac{\mathrm{L}^{2}}{\mathrm{D}_{\mathrm{AB}}} \partial \tau
$$

$\mathrm{D}_{\mathrm{AB}} \frac{\partial^{2} \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{z}^{2}}=\frac{\partial \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{t}}$
$\mathrm{D}_{\mathrm{AB}} \frac{\partial}{\partial \mathrm{z}}\left(\frac{\partial \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{z}}\right)=\frac{\partial \mathrm{C}_{\mathrm{A}}}{\partial \mathrm{t}}$
$\mathrm{D}_{\mathrm{AB}} \frac{\partial}{\mathrm{L} \partial \xi}\left(\frac{-\left(\mathrm{C}_{\mathrm{A} \infty}-\mathrm{C}_{\mathrm{Ao}}\right) \partial \theta}{\mathrm{L} \partial \xi}\right)=\frac{-\left(\mathrm{C}_{\mathrm{A} \infty}-\mathrm{C}_{\mathrm{Ao}}\right) \partial \theta}{\frac{\mathrm{L}^{2}}{\mathrm{D}_{\mathrm{AB}}} \partial \tau}$
$\frac{\partial^{2} \theta}{\partial \xi^{2}}=\frac{\partial \theta}{\partial \tau}$
IC: $\quad \tau=0 \quad \theta=1$
$\mathrm{BC} 1: \quad \xi=1 \quad \theta=0$
BC2: $\xi=-1 \quad \theta=0$
c) Separation of variables
$\theta(\tau, \xi)=\mathrm{F}(\tau) \mathrm{G}(\xi)$
$\frac{\partial \theta}{\partial \tau}=\mathrm{G} \frac{\mathrm{dF}}{\mathrm{d} \tau} \quad \frac{\partial^{2} \theta}{\partial \xi^{2}}=\mathrm{F} \frac{\mathrm{d}^{2} \mathrm{G}}{\mathrm{d} \xi^{2}}$
$\frac{1}{\mathrm{G}} \frac{\mathrm{d}^{2} \mathrm{G}}{\mathrm{d} \xi^{2}}=\frac{1}{\mathrm{~F}} \frac{\mathrm{dF}}{\mathrm{d} \tau}=-\lambda^{2}$
$\frac{1}{\mathrm{~F}} \frac{\mathrm{dF}}{\mathrm{d} \tau}=-\lambda^{2} \quad \mathrm{~F}=\operatorname{Iexp}\left(-\lambda^{2} \tau\right)$
$\frac{1}{\mathrm{G}} \frac{\mathrm{d}^{2} \mathrm{G}}{\mathrm{d} \xi^{2}}=-\lambda^{2} \quad \mathrm{G}=\mathrm{c} 1 \sin (\lambda \xi)+\mathrm{c} 2 \cos (\lambda \xi)$ Apply BC1 and BC2

BC1: $0=\mathrm{c} 1 \sin (\lambda)+\mathrm{c} 2 \cos (\lambda)$
BC2: $0=c 1 \sin (-\lambda)+c 2 \cos (-\lambda)$ $0=-c 1 \sin (\lambda)+c 2 \cos (\lambda)$
$c 1 \sin (\lambda)+c 2 \cos (\lambda)=-c 1 \sin (\lambda)+c 2 \cos (\lambda)$
c1 $\sin (\lambda)=-c 1 \sin (\lambda)$
$\mathrm{cl}=0$

$$
\begin{aligned}
& 0=\mathrm{c} 1 \sin (\lambda)+\mathrm{c} 2 \cos (\lambda) \\
& +0=-\mathrm{c} 1 \sin (\lambda)+\mathrm{c} 2 \cos (\lambda) \\
& 0=2 \mathrm{c} 2 \cos (\lambda) \\
& \cos (\lambda)=0
\end{aligned}
$$

$$
\begin{aligned}
& \lambda \mathrm{n}=\left(\mathrm{n}+\frac{1}{2}\right) \pi \\
& \mathrm{F}=\mathrm{I}_{\mathrm{n}} \exp \left(-\lambda_{\mathrm{n}}{ }^{2} \tau\right) \\
& \mathrm{G}=\mathrm{c}_{\mathrm{n}} \cos \left(\lambda_{\mathrm{n}} \xi\right) \\
& \theta(\tau, \xi)=\mathrm{F}(\tau) \mathrm{G}(\xi)=\sum_{\mathrm{n}=0}^{\infty} \mathrm{I}_{\mathrm{n}} \exp \left(-\lambda_{\mathrm{n}}{ }^{2} \tau\right) \mathrm{c}_{\mathrm{n}} \cos \left(\lambda_{\mathrm{n}} \xi\right) \\
& \mathrm{A}_{\mathrm{n}}=\mathrm{I}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}} \\
& \mathrm{~A}_{\mathrm{n}}=\frac{2(-1)^{\mathrm{n}}}{\left(\mathrm{n}+\frac{1}{2}\right) \pi} \pi \\
& \theta=\sum_{\mathrm{n}=0}^{\infty} \frac{2(-1)^{\mathrm{n}}}{\left(\mathrm{n}+\frac{1}{2}\right) \pi} \exp \left(-\left(\mathrm{n}+\frac{1}{2}\right)^{2} \pi^{2} \tau\right) \cos \left(\left(\mathrm{n}+\frac{1}{2}\right) \pi \xi\right) \\
& \theta=\frac{\mathrm{C}_{\mathrm{A} \infty}-\mathrm{C}_{\mathrm{A}}}{\mathrm{C}_{\mathrm{A} \infty}-\mathrm{C}_{\mathrm{Ao}}}=\sum_{\mathrm{n}=0}^{\infty} \frac{2(-1)^{\mathrm{n}}}{\left(\mathrm{n}+\frac{1}{2}\right) \pi} \exp \left(-\left(\mathrm{n}+\frac{1}{2}\right)^{2} \pi^{2} \tau\right) \cos \left(\left(\mathrm{n}+\frac{1}{2}\right) \pi \xi\right) \\
& \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A} \infty}-\frac{2\left(\mathrm{C}_{\mathrm{A} \infty}-\mathrm{C}_{\mathrm{Ao}}\right)}{\pi} \sum_{\mathrm{n}=0}^{\infty} \frac{(-1)^{\mathrm{n}}}{\left(\mathrm{n}+\frac{1}{2}\right)} \exp \left(-\left(\mathrm{n}+\frac{1}{2}\right)^{2} \pi^{2} \tau\right) \cos \left(\left(\mathrm{n}+\frac{1}{2}\right) \pi \xi\right)
\end{aligned}
$$

