MANAGERIAL ECONOMICS CHAPTER 8

Cost Analysis

Cost Analysis Chapter 8

The meaning and measurement of cost

 Short-run Cost Functions
 Long-run Cost Functions
 Scale Economies and Cost
 Appendix 8A: Cobb-Douglas & Long Run Cost

The Object of Cost Analysis

- Managers seek to produce the highest quality products at the lowest possible cost.
- Firms that are satisfied with the status quo find that competitors arise that can produce at lower costs.
- The advantages once assigned to being large firms (economies of scale and scope) have not provided the advantages of flexibility and agility found in some smaller companies.
- Cost analysis is helpful in the task of finding lower cost methods to produce goods and services.

Managerial Challenge: US Airways

- US Airways created in mergers with Allegheny, Mohawk, Lake Central, Pacific Southwest and Piedmont Airways.
- Mostly in the East, with high cost but high yields (most seats were filled).
- But, this situation invites entry by competitors by Continental or others.
- The key to US Airways' survival lays in managing its high cost.

MEANING OF COST

There an Many Economic Cost Concepts • **Opportunity Cost** -- value of next best alternative use. • Explicit vs. Implicit Cost -actual prices paid vs. opportunity cost of owner supplied resources.

Examples of Relevant Cost Concepts

- Depreciation Cost Measurement. Accounting depreciation (*e.g.*, straight-line depreciation) tends to have little relationship to the actual loss of value
 - To an economist, the actual loss of value is the true cost of using machinery.
- Inventory Valuation. Accounting valuation depends on its acquisition cost
 - Economists view the cost of inventory as the cost of replacement.

- Unutilized Facilities. Empty space may appear to have "no cost"
 - Economists view its alternative use (*e.g.*, rental value) as its opportunity cost.
- Measures of Profitability. Accountants and economists view *profit* differently.
 - Accounting profit, at its simplest, is revenues minus explicit costs.
 - Economists include other implicit costs (such as a normal profit on invested capital).
- **Economic Profit** = Total Revenues Explicit Costs - Implicit Costs

- Sunk Costs -- already paid for, or there is already a contractual obligation to pay
- Incremental Cost - extra cost of implementing a decision = ∆ TC of a decision
- Marginal Cost -- cost of last unit produced = ∂ TC/ ∂ Q

SHORT RUN COST FUNCTIONS 1. TC = FC + VC fixed & variable costs

2. ATC = AFC + AVC = FC/Q + VC/Q

Science, Department of Economics, Onur

Short Run Cost Graphs

MC intersects lowest point of AVC and lowest point of ATC.

When MC < AVC, AVC declines When MC > AVC, AVC rises

Relation of Cost & Production Functions in SR

AP & AVC are inversely related. (ex: one input)
AVC = WL /Q = W/ (Q/L) = W/ AP_L
As AP₁ rises, AVC falls

 MP and MC are inversely related
 MC = dTC/dQ = W dL/dQ = W / (dQ/dL) = W / MP_L

• As MP_L declines are Micersity, Faculty of Political Science, Department of Economics, Onur

Özsoy

4/4/2018

rises

Problem **Let there be a cubic VC function:** $VC = .5 Q^3 - 10 Q^2 + 150 Q$ find AVC from VC function find minimum variable cost output and find MC from VC function Minimum AVC, where dAVC/dQ = 0 • $AVC = .5 Q^2 - 10 Q + 150$ • dAVC / dQ = Q - 10 = 0• Q = 10, so AVC = 100 @ Q = 10 • MC= dVC/dQ= 1.5 Q² - 20 Q + 150

Long Run Costs

- In Long Run, ALL inputs are variable
 LRAC
 - long run average cost
 - ENVELOPE of SRAC curves
- LRMC is FLATTER than SRMC curves

Long Run Cost Functions: Envelope of SRAC curves

Ave Cost

SRAC-small capital SRAC-med. capital

SRAC-big capital

LRAC--Envelope of SRAC curves

 \bigcirc

Economists think that the LRAC is U-shaped

Downward section due to:

- Product-specific economies which include specialization and learning curve effects.
- Plant-specific economies, such as economies in overhead, required reserves, investment, or interactions among products (*economies of scope*).
- Firm-specific economies which are economies in distribution and transportation of a geographically dispersed firm, or economies in marketing, sales promotion, or R&D of multi-product firms.

Flat section

- Constant returns to scale
- Upward rising section of LRAC is due to:
 - *diseconomies of scale*. These include transportation costs, imperfections in the labor market, and problems of coordination and control by management.
 - The **minimum efficient scale** (MES) is the smallest scale at which minimum per unit costs are attained.
 - Modern business management offers techniques to avoid diseconomies of scale through profit centers, transfer pricing, and tying incentives to performance.

Equi-marginal Principle in LR

Since, LR costs are least cost, they must be efficient; that is, obey the equimarginal principle:

MP_X/C_X = MP_Y/C_Y.
 ■ That is, the marginal product per dollar in each use is equal.

Problem: Let TC & MC be: $\Box TC = 200 + 5Q - .4Q^2 + .001Q^3$ \square MC = 5 - .8Q + .003 Q² a. FIND fixed cost FIND AVC function b. FIND minimum average variable cost point If FC rises \$500, what happens to C. minimum average variable

Ankara University, Faculty of Political Science, Department of Economics, Onur

Özsov

4/4/2018

cost?

 $TC = 200 + 5Q - .4Q^{2} + .001Q^{3}$ $MC = 5 - .8Q + .003 Q^{2}$ a. FIND fixed cost FIND AVC function Answer: FC = 200 and AVC = 5 - .4Q + .001Q^{2}.

b. FIND minimum average variable cost point
Answer: First find dAC/dQ = 0: From (a) that is:
-.4 + .002Q = 0, so Q = 2,000

c. If FC rises \$500, what happens to minimum average variable cost?

Answer:

No change, since AVC doesn't

Science, Department of Economics, Onur

Cobb-Douglas Production Function and the Long-Run Cost Function: *Appendix 8A*

Long Run Costs & Production Functions: 1 Input

- In the long run, total cost is: $TC = w \cdot L$, where w is the wage rate.
- production function is Cobb-Douglas: $Q = L^{\beta}$.
- Solving for L in the Cobb-Douglas production function, we find: $L = Q^{1/\beta}$.
- Substituting this into the total cost function, we get:

One Input Case

$\Box \mathbf{T}\mathbf{C} = \mathbf{W} \cdot \mathbf{Q}^{1/\beta}.$

This also demonstrates that if the production function were constant returns to scale (B=1), then TC rises linearly with output and average cost is constant.

If the production function is increasing returns to scale (B >1), then TC rises at a decreasing rate in output and average cost is declining.

 If the production function is decreasing returns to scale (β<1), then TC rises at an increasing rate in output and average cost rises.

TWO Input Case

- With two inputs, long run cost is: $TC = w \cdot L + r \cdot K$,
 - where w is the wage rate and r is the cost of capital, K.
- Cobb-Douglas: $Q = K^{\alpha} \cdot L^{\beta}$.
- The manager attempts to minimize cost, subject to an output constraint. This is a Lagrangian Multiplier problem.

• Min $L = w \cdot L + r \cdot K + \lambda \cdot [K^{\alpha} \cdot L^{\beta} - Q]$

Taking derivatives and solving yields a total cost:

$$TC = W \cdot L^* + r \cdot K^* =$$

- TC = w·Q^{(1/(\alpha+\beta))}·(\alpha·w/\beta·r)^{(\beta/(\alpha+\beta))} + r·Q^{(1/(\alpha+\beta))}·(\alpha·w/\beta·r)^{(\alpha/(\alpha+\beta))}
- If (α+β>1), then 1/(α+β)
 less than 1, and total cost
 rises at a decreasing rate in
 output. That means that

Ankara University, Faculty of Political **Ankara University**, Faculty of Political Science, Department of Economics, Onur