Managerial Economics CHAPTER 5

Business and Economic Forecasting

Business and Economic Forecasting

Chapter 5

Demand Forecasting is a critical managerial activity which comes in two forms:
Qualitative Forecasting Gives the Expected Direction

Quantitative Forecasting
Gives the precise Amount

Why Forecast Demand?

- Both public and private enterprises operate under conditions of uncertainty.
o Management wishes to limit this uncertainty by predicting changes in cost, price, sales, and interest rates.
o Accurate forecasting can help develop strategies to promote profitable trends and to avoid unprofitable ones.
A forecast is a prediction concerning the future. Good forecasting will reduce, but not eliminate, the uncertainty that all managers feel.
- The selection of forecasting techniques depends in part on the level of economic aggregation involved. The hierarchy of forecasting is:
- National Economy (GDP, interest rates, inflation, etc.)

(durable

goods)

7 industry forecasts (automobile manufacturers)

- firm forecasts (Ford Mołor Company)

Forecasting Criteria

The choice of a particular forecasting method depends on several criteria:
o costs of the forecasting method compared with its gains

- complexity of the relationships among variables time period involved accuracy needed in forecast
the lead time between receiving information and the decision to be made

Significance of Forecasting

- The accuracy of a forecasting model is measured by how close the actual variable, Y, ends up to the forecasting variable, Y.
- Forecast error is the difference. $(Y-Y)$

Models differ in accuracy, which is often based on the square root of the average squared forecast error over a series of N forecasts and actual figures
Called a root mean square error, RMSE.

$$
\text { RMSE }=\sqrt{ }\left\{\Sigma(Y-Y)^{2} / N\right\}
$$

Qualitative Forecasting

ADVANTAGES

o Flexibility --
> easily altered as economy changes

- Early Signals --
can catch changes and anomalies in data
- Complex --
> hard to keep track of interactions in the primary variables
Lack of Tests for Accuracy -can't easily test the accuracy in prior periods.

Quantitative Forecasting and the Use of Models

Advantages

Organize relationships Behavioral relationships Tests of reliability

Economy changes Data mining of same information Only a crude approximation

Alan Greenspan --
Chairman of the Board of Governors of the Federal Reserve
"Economic forecasting is really the art of identifying tensions or imbalances in the economic process and understanding in what manner they will be resolved." -A. Greenspan

Qualitative Forecasting

1. Comparative

Statics

> Shifts in Demand
> Shifts in Supply
Forecast Changes in Prices and
Quantities

- Suppose Income Shifts

Price Rises
Quantity Rises

quantity

2. Expert Opinion

The average forecast from several experts is a Consensus Forecast.
> Mean
> Median
> Mode
> Truncated Mean

Proportion positive or negative

EXAMPLES:

- IBES and Zacks Investment -- earnings forecasts of stock analysts
- Conference Board -- macroeconomic predictions
- Livingston Surveys--macroeconomic forecasts of 50-60 economists
- Delphi Technique--panel of diverse experts.

1. Write out forecasts
2. Show them to other panelists
3. meet to arrive at consensus

Note: problems of expense and intransigence
Chicago Daily News Sportswriters
Ranking of NFL predictions of 16 forecasters
Year 1 Year 2 Year 3
Carmichael18
16
Biondo
Duck6
Concensus
 2

The consensus predicted better over time than any 1 writer.

3. Surveys

Common Survey Problems

New Products have no historical data -- Surveys can assess interest in new ideas.

Survey Research Center of U. of Mich. does repeat surveys of households on Big Ticket items (Autos)

- Sample bias--
> telephone, magazine
o Biased questions--
> advocacy surveys
Ambiguous questions
Respondents may lie on questionnaires

4. Economic Indicators (Barometric Forecasting)

Direction of sales can be indicated by other variables.

Example: Index of Capital Goods is a "leading indicator" There are also lagging indicators and coincident indicators

Time given in months from change

LEADING INDICATORS*

> M2 money supply (-10.9)
> S\&P 500 stock prices (6.9)
> New housing permits(10.1)
> Initial unemployment claims (-7.3)
> Orders for plant and equipment (-3.9)

COINCIDENT INDICATORS

> Nonagricultural employment (+.9)
> Index of industrial production (-.6)
> Personal income less transfer payment (-.6)

Duration of unemployment (+4.4)

Questions

Why are contracts and orders for plant and equipment appropriate leading indicators?

Why is the index of industrial production an appropriate coincident indicator?

Why is the prime rate an appropriate lagging indicator?

Examples of Indicators

Composite Example: One indicator

 rises 4\% and another rises 6\% The Composite Index is a 5\% increase.Diffusion Example: Wall Street Week with eleven analysts, where 4 are negative about stocks and 7 are positive:

The Diffusion Index is $7 / 11$, or 63.3%.

Interpreting and Using Indices

- composite index - weighted average index of individual indicators
> index interpreted in terms of \% change
> composite index of leading economic indicators: sustained increase indicates economic growth diffusion index - measure of the proportion of individual time series that increase
for diffusion index of leading economic indicators, if index $>50 \%$, improved conditions are expected

What Went Wrong With SUVs at Ford Motor Co?

- Chrysler introduced the Minivan in the 1980's
- Ford expanded its capacity to produce the Explorer, its popular SUV
- Explorer's price raised in 1995 substantially at same time as Chrysler's Jeep Cherokee and GM expanded its Chevrolet SUV Must consider response of rivals in pricing decisions

Quantitative Forecasting

O

Looks For Patterns
> Ordered by Time
> No Underlying Structure
o Econometric Models
> Explains relationships \&
> Supply \& Demand
Regression Models

Like fundamental security analysis

Time Series Examine Patterns in the Past

Dependent Variable

- Time Series

\Rightarrow is a quantitative forecasting method
\Rightarrow Uses past data to project the future

- looks for highest ACCURACY possible
Accuracy (MSE \& MAD)
\Rightarrow Mean Squared Error \& Mean Absolute Deviation
$O F_{t+1}=f\left(A_{t}, \quad A_{t-1}, A_{t-2}, \ldots\right)$
Let $\mathbf{F}=$ forecast and
Let $\mathbf{A}=$ actual data

MSE $=\Sigma^{N_{t=1}}\left[F_{t}-A_{t}\right]^{2} / N$

The LOWER the MSE or MAD, the greater the accuracy

MAD $=\Sigma^{N}{ }_{t=1}\left|\left(F_{\dagger}-A_{\dagger}\right)\right|$ /N

Methods of Time Series Analysis for Economic Forecasting

1. Naive Forecast

$$
F_{t+1}=A_{t}
$$

> Method best when there is no trend, only random error
Graphs of sales over time with and without trends

2. Moving Average

- A smoothing

Dependent Variable forecast method for data that jumps around

- Best when there is no trend
3-Period Moving Ave.

$$
F_{t+1}=\left[A_{t}+A_{t-1}+A_{t-2}\right] / 3
$$

*

TIME

3. Exponential Smoothing

- A hybrid of the Naive and Moving Average methods
- $F_{t+1}=\alpha \cdot \cdot A_{t}+(1-\alpha) F_{t}$

A weighted average of past actual and past forecast.

- Each forecast is a function of all past observations
- Can show that forecast is based on
geometrically declining weights.
$F_{t+1}=\alpha \cdot \cdot A_{t}+(1-\alpha) \cdot \alpha \cdot A_{t-1}+$
$(1-\alpha)^{2} \cdot \alpha \cdot A_{t-1}+\ldots$
Find lowest MSE to pick the best alpha.

4. Linear \& 5. Semi-log

Linear Trend Regression

- Used when trend has a constant AMOUNT of change
$A_{t}=a+b \cdot T$, where
$\mathrm{A}_{\boldsymbol{t}}$ are the actual observations and T is a numerical time variable

Semi-log Regression

- Used when trend is a constant PERCENTAGE rate $\log A_{t}=a+b \cdot T$, where \mathbf{b} is the continuously compounded growth rate

More on Semi-log Form

 a proof- Suppose: Sales $_{\mathrm{t}}=$ Sales $_{0}(1+\mathbf{G})^{\dagger}$ where G is the annual growth rate
- Take the natural log of both sides:
$>\operatorname{Ln} S_{\mathrm{t}}=\operatorname{Ln} \mathrm{S}_{0}+\dagger \cdot \operatorname{Ln}(1+G)$
$>$ but $\operatorname{Ln}(1+G)=g$, the equivalent continuously compounded growth rate SO: $\quad \operatorname{Ln} S_{\mathrm{t}}=\operatorname{Ln} \mathrm{S}_{0}+\dagger \cdot \mathrm{g}$

Numerical Examples: 6 observations

MTB > Print cl-c3.

Sales Time Ln-sales
$100.0 \quad 1 \quad 4.60517$
$109.8 \quad 24.69866$
$121.6 \quad 34.80074$
$133.7 \quad 4 \quad 4.89560$
146.254 .98498
$164.3 \quad 6 \quad 5.10169$

Using this sales data, estimate sales in period 7 using a linear and a semi-log functional
form

The regression equation is Sales = 85.0 + 12.7 Time

Predictor	Coef	Stdev	t-ratio	p
Constant	84.987	2.417	35.16	0.000
Time	12.6514	0.6207	20.38	0.000
s = 2.596	R-sq $=99.0 \%$	R-sq(adj) $=98.8 \%$		

The regression equation is Ln-sales $=4.50$ + 0.0982 Time

Predictor	Coef	Stdev	t-ratio	p
Constant	4.50416	0.00642	701.35	0.000
Time	0.098183	0.001649	59.54	0.000

$\mathrm{s}=0.006899 \quad \mathrm{R}-\mathrm{sq}=99.9 \%$
R-sq(adj) $=99.9 \%$

Forecasted Sales @ Time = 7

O

- Sales $=85.0$ + 12.7 Time
- Sales $=85.0+12.7(7)$
- Sales $=173.9$
linear

85

o Semi-Log Model

- Ln-sales = 4.50 + 0.0982 Time
- Ln-sales $=4.50+$ 0.0982

Ln-sales = 5.1874
To anti-log:
$e^{5.1874}=179.0$

Sales Time Ln-sales
$100.0 \quad 1 \quad 4.60517$
$109.8 \quad 24.69866$
$121.6 \quad 34.80074$
133.744 .89560
146.254 .98498
$164.3 \quad 6 \quad 5.10169$
$179.0 \quad 7$ semi-log
173.9 7 linear

Semi-log is

Which prediction do you prefer?

6. Procedures for Seasonal

Adjustments

12 -quarters of data

I II III IV I II III IV I II III IV

- Take ratios of A/F for past years. Find the average ratio. Adjust by this percentage
> If average ratio is 1.02, adjust forecast upward 2\%
Use Dummy Variables in a regression: $D=1$ if 4 th quarter; 0 otherwise

Quarters designated with roman numerals.

Dummy Variables for Seasonal

Adjustments

- Let $\mathbf{D}=\mathbf{1}$, if 4th quarter and $\mathbf{0}$ otherwise
- Run a new regression:
> the "c" coefficient gives the amount of the adjustment for the fourth quarter. It is an Intercept Shifter.
- EXAMPLE: Sales $=300$ + $10 \cdot \mathrm{~T}+18 \cdot \mathrm{D}$

12 Observations, 1999-I to 2001 -IV, Forecast all of 2002.

Sales(2002-I) $=430$; Sales $(2002-I I)=440 ;$ Sales $(2002-$ III) $=450$; Sales $(2002-$ IV $)=478$

Dummy Variable Interactions

- Can introduce a slope shifter by "interacting" †wo variables
>c is the intercept shifter
$>d$ is the slope shifter
E.g., Sales $=300+10 \cdot T+18 \cdot \mathrm{D}-3 \cdot \mathrm{D} \cdot \mathrm{T}$ implies that the Intercept is 318 , when $\mathrm{D}=1$ implies that the slope is 7 , when $D=1$

Econometric Models

- Specify the variables in the model
- Estimate the parameters
> single equation or perhaps several stage methods
$>Q_{d}=a+b \cdot P+c \bullet l+d \bullet P_{s}+e \bullet P_{c}$
- But forecasts require estimates for future prices, future income, etc.
Often combine econometric models with time series estimates of the independent variable.

Garbage in
Garbage out

- $Q_{d}=400-.5 \cdot P+2 \cdot Y+.2 \cdot P_{s}$
$>$ anticipate pricing the good at $\mathrm{P}=$ \$20
$>$ Income is growing over time, the estimate is: $\ln Y_{t}=2.4+.03 \cdot \mathrm{~T}$, and next period is $\mathrm{T}=17$.
The prices of substitutes are likely to be $\mathrm{P}=\$ 18$.
Find Q_{d}
$\mathrm{Y}=\mathrm{e}^{2.910}=18.357$ Hence $\mathrm{Q}_{\mathrm{d}}=430.31$

