MANAGERIAL ECONOMICS CHAPTER 13

Price and Output Determination: Oligopoly

Price and Output Determination: Oligopoly

- Oligopolistic Market Structures
- Few Firms
- Consequently, must consider the reaction of rivals to price, production, or product decisions
- Interrelated reactions

Heterogeneous or Homogeneous Products

- Example -- athletic shoe market

Nike has 47% of market
Reebok has 16\% and Adidas has 7\%

COURNOT OLIGOPOLY

- Oligopoly -- just a feW firms
- Models vary depending on assumptions of actions of to pricing and output decisions.
- Augustin Cournot (1838) created a model that is the basis of Anti-trust Policy in the US.

Relatively simple assumption: ignore the interdependency with rivals
This makes the math easy

A Model Between Monopoly \& Competition

$P=950-Q$ and $M C=50$

EXAMPLE:

- IN COMPETITION

$$
\begin{aligned}
& \mathrm{P}=\mathrm{MC} \text {, so } 950-\mathrm{Q}=50 \\
& \mathrm{P}_{\mathrm{C}}=\$ 50 \text { and } \mathrm{Q}_{\mathrm{M}}=900
\end{aligned}
$$

$\$ 500$

$\mathbf{Q}_{\mathrm{M}} \mathbf{Q}_{\text {Cournot }} \mathbf{Q}_{\mathbf{C}}$
$450600 \quad 900_{\text {Mara Unive }}$

Cournot Solution: Case of 2 Firms (Duopoly)

- Assume each firm maximizes profit
- Assume each firm believes the other will NOT change output as they change output.

The so-called: Cournot Assumption

- Find where each firm sets $\mathbf{M R}=$ MC

$$
\begin{aligned}
& \text { Let } O=q_{1}+q_{2} \\
& P=950 Q=950-q_{1}=q_{2} \text { and } M C=50
\end{aligned}
$$

$$
T R_{1}=P q_{1}=\left(950 q_{1}-q_{2}\right) q_{1}=950 q_{1}-q_{1}^{2}-q_{1} q_{2}
$$

and

$$
=P q_{2}=\left(950-q_{1}-q_{2}\right) q_{2}=950 q_{2}-q_{2} q_{1}-q_{2}^{2}
$$

- Set $M R_{1}=M C \quad \& \quad M R_{2}=M C$ $950-2 \mathrm{q}_{1}-\mathrm{q}_{2}=50 \square 2$ equations \& $950-q_{1}-2 q_{2}=50 L$

2 unknowns

With 2 Equations \& 2 Unknowns: Solve for Output $950-2 q_{1}-q_{2}=950-q_{1}-2 q_{2}$
So, $q_{2}=q_{1}$ Then plug this into the demand equation we find:

$$
950-2 \mathrm{q}_{1}-\mathrm{q}_{1}=950-3 \mathrm{q}_{1}=50 .
$$

Therefore $q_{1}=300$ and $Q=\underline{600}$
The price is: $\mathrm{P}=950-600=\underline{\$ 350}$

	P	Q
Competition	50	900
Cournot	350	600
Monopoly	500	450

N-Firm Cournot Model

- For 3 firms with linear demand and cost functions:

$$
Q=q_{1}+q_{2}+q_{3}
$$

- the solution is higher output and lower price

THEREFORE, Increasing the Number of Firms Increases Competition. This is the historical basis for Anti-trust Policies

Example: Cournot as N Increases

$\mathrm{N}=3 \quad \mathrm{~N}=5$

- If $\mathrm{N}=3$ Triopoly

ㅁ $P=950-Q \&$ MC=50

- Then, $\mathrm{Q}=(3 / 4)(900)$

ㅁ $Q=675$

- $P=\$ 275$

Oligopolies \& Incentives to Collude

 When there are just a few firms, profits are enhanced if all reduce outputBut each firm has incentives to "cheat" by selling more

Collusion vs Competition

\square Sometimes collusion will succeed
\square Sometimes forces of competition win out over collective action
\square When will Collusion tend to succeed?
Determinants of successful

Factors Likely to Affect Collusion

1. Number and Size Distribution of Sellers. Collusion is more successful with few firms or if there exists a dominant firm.
2. Product Heterogeneity. Collusion is more successful with products that are standardized or homogeneous
3. Cost Structures. Collusion is more successful when the costs are similar for all of the firms in the oligopoly.
4. Size and Frequency of Order. Collusion is more successful with small, frequent orders.
5. Secrecy and Retaliation. Collusion is more successful when it is difficult to give secret price concessions.

Examples of Cartels

- Ocean Shipping -- maritime exemption from US Antitrust Laws
- DeBeers -- diamonds
- 1950's Electrical Pricing Conspiracy -- GE, Westinghouse, and Allis Chalmers
- OPEC - oil cartel, with Saudi Arabia making up 33\% of the group's exports
- Siemens and Thompson-CSF -- airport radar systems
- NCAA - intercollegiate sports

PRICE LEADERSHIP

Barometric Price Leader
Dominant Firm Price Leader
\square arometric: One (or a few firms) sets the price

- One firm is unusually aware of changes in cost or demand conditions
- The barometer firm senses changes first, or is the first to ANNOUNCE changes in its price list
- Find barometric price leader when the conditions unsuitable to collusion \& firm has
442018 good forecasting abilities or good management

Barometric Price Leader Example: Citibank \& Prime Rate

Announcements

- Banking: 6,000 banks and falling, but still a lot.
- New York, center of Open Market activities of the Fed Reserve
- Citibank's announcement represents changes in interest rate conditions to other banks tolerably well.

Dominant Price Leadership

- Dominant Firm: 40\% share of market or more.
No price or quantity collusion
- Dominant Firm (L) expects the other firms (F) to follow its price and produce where

$$
\Sigma \mathrm{MC}_{\mathrm{F}}=
$$

P_{L}
Ner Demmand curve: $D_{L}=D-\Sigma M C_{F}$

- Find leader's demand curve, $\mathrm{D}_{\mathrm{L}}=(\mathrm{D}-\Sigma \mathrm{MC}$ F)
- Find where $\mathrm{MR}_{\mathrm{L}}=\mathrm{MC}_{\mathrm{L}}$
- At Q_{L} find the leader's price, P_{L}
- Followers will supply the remainder of Demand: $\left(\mathrm{Q}_{\mathrm{T}}-\mathrm{Q}_{\mathrm{L}}\right)=\mathrm{Q}_{\mathrm{F}}$
- Find leader's demand curve, $\mathrm{D}_{\mathrm{L}}=(\mathrm{D}-\Sigma \mathrm{MC}$ F)
- Find where $\mathrm{MR}_{\mathrm{L}}=\mathrm{MC}_{\mathrm{L}}$
- At Q_{L} find the leader's price, P_{L}
- Followers will supply the remainder of Demand:
$\left(\mathrm{Q}_{\mathrm{T}}-\mathrm{Q}_{\mathrm{L}}\right)=\mathrm{Q}_{\mathrm{F}}$
Ankara University, Faculty of Political
Science, Department of Economics, Onur
- Find leader's demand curve, $\mathrm{D}_{\mathrm{L}}=(\mathrm{D}$ $-\Sigma \mathrm{MC}_{\mathrm{F}}$)
\square Find where $\mathrm{MR}_{\mathrm{L}}=\mathrm{MC}_{\mathrm{L}}$
- At Q_{L} find the leader's price, P_{L}
- Followers will supply the remainder of Demand: $\left(\mathrm{Q}_{\mathrm{T}}-\mathrm{Q}_{\mathrm{L}}\right)=\mathrm{Q}_{\mathrm{F}}$
Ankara niycrsity, Faculty of Political
Science, Depastrinent of Economics, Onur
Science, Depativent of

Implications of a Dominant Firm P.L.

- Market Share of the Dominant Firm Declines Over Time
- Entry expands $\Sigma \mathrm{MC}_{\mathrm{F}}$ and Shrinks D_{L} and MR_{L}
- Profitability of the Dominant Firm Declines Over Time

profits
 \square Market Share of the Dominant Firm is \rightarrow TIME PROCYCLICAL

rises in booms, declines in recessions

U.S. Steel (USX)

- Judge Gary
- Industrial "Cocktail Parties" to discuss pricing
■ 1901 steel mergers led by
 J.P.Morgan

66\% market share 46\% market share by 1920
42\% share by 1925

Kinked Oligopoly Demand Curve

- Belief in price rigidity founded on experience of the great depression
- Price cuts lead to everyone following
- highly inelastic
- Price increases, no one follows
highly elastic

a kink at the price

A Kink Leads to Breaks in the MR Curve

- Although MC rises, the optimal price remains constant
- Expect to find price rigidity in markets with kinked demand - QUESTION:
- Where would we more likely find KINKS and where NOT?

Which industries are likely to have kinks and which have no kinks?

\square The GREATER the number of \square The more firms, likely more kinked

- Prices Likely More Rigid
 HOMOGENEOUS, likely more kinked
- Prices More Rigid

Ankara University, Faculty of Political

Empirical Evidence vs. Predictions of the Model

- Oligopolies with few firms were more rigid in FACT
- Oligopolies with homogeneous products were MORE rigid in FACT
σ^{2}

Are these Empirical Findings

- A Kink is a barrier to profitability
\square Firms are in business to make profits and avoid "barriers."
- Simple Alternative Explanations Exist:

More firms are more competitive
More homogenous products act more competitive

- Collusion leads firms to fix prices. The rigid prices seen in oligopolies are signs of collusion.

Price Rigidities and Employment Impacts

- Price rigidity will make business downturns worse
- Employment will be more volatile over the business cycle if there are price rigidities

A rigid price

Oligopolistic Rivalry \& Game Theory

- John Von Neuman \& Oskar Morgenstern-used to describe situations where individuals or organizations have conflicting objectives
- Examples: Pricing of a few firms, Strategic Arms Race, Advertising plans for a few firms, Output decisions of an oligopoly
- Strategy--is a course of action

The PAYOFF is the outcome of the strategy. Listing of PAYOFFS appear in a payoff matrix.

Two Person, Zero Sum Game

ASSUMPTIONS

- Each player knows his

PLAYER 2 and opponent's alternatives

- Preferences of all players are known
- Single period game
- Sum of payoffs are zero Like a Poker Game
- An Equilibrium--none of the participants can improve their payoff

Player 1 is the first number in each pair. We will get to $\{a, c\}$ Whichorsman Equilibrium

Dominant Strategies \& Maximin Strategy

- For Player 1, strategy (a) is a dominant strategy
- best regardless off what others do
- Maximin

Strategy
the choice that
MAXIMIZES across the set of

Player 1 looks for the Max \{ Min\} as Max $\{1,-2\}$ so picks Strategy-a Player 2 looks for Max \{ Min \} as MINIMUM possienible ${ }^{\text {diartmons ony }}$

Find Maximin Strategies for Bob \& Alice

- Alice's payoffs appears in upper triangle and appear in the bottom
- Find Maximin Solution
- Is it an

Equilibrium?

Worst for Alice with a-strategy is -1
Worst for Bob with c-strategy is -5
Worst for Bob with d-strategy is -7
Worst for Bow withe-strategy is 1

Unstable Games: No Equilibrium Is Found

- In the Alice-Bob

Game here,
Maximin Strategies
lead to solution $\{\mathrm{b}$, Alice c\}

- But Alice has an

Bob
c d

a	$3,-3$	$1,-1$
b	$2,-2$	$4,-4$

- Then Bob has an incentive to switch to strategy-d, etc., strategy

Two-Person, Non-Zero Sum Games

- Often the payoffs vary depending on the strategy choices
- Famous Example:
- Noncooperative Solution
both confess: $\{C, C\}$
- Cooperative Solution
- both do not confess \{NC,NC\}
- Off-diagonal represent a Double Cross
suspect 2
NC
- Two suspects are caught \& held separately
- Confess or Not Confess:

Duopoly as a Prisoner's

- Even if both spies
meet to agree on a cooperative solution, one may double cross.
- Two firms:

Decision is the amount of output

FIRM 2
 [$\mathrm{S}=$ small, or LMAXIMIN SOLUTION $\{\mathrm{L}, \mathrm{L}$ \} large]

- $\{\mathrm{L}, \mathrm{L}\}$ represents normal profits

Duopoly as a Multiperiod

Game

\square The single period game predicts that there will be competition

- But duopolists are likely to have many periods in which to compete
- Multiple periods allow for "Punishment" or retribution not found in single period games.
We would expect that collusion is More Likely to Succeed, the greater chance for more periods

N - Person Games

- Can extend also to more than 2 players
- Chief new complication:
- Coalitions of players
- Issues of cooperation \& duplicity
- Solutions for N-person games can be difficult
It gives mangers a way to gain an insight into the nature of conflict,

