Statistics 1 Chapter 4 Describing Data 3

Ankara University, Faculty of Political Science, Department of Economics, Onur Özsoy 4/4/2018

Chapter Four Describing Data: Measures of Dispersion

GOALS

When you have completed this chapter, you will be able to:

ONE

Compute and interpret the range, the mean deviation, the variance, and the standard deviation from raw data.

TWO

Compute and interpret the range, the variance, and the standard deviation from grouped data.

THREE

Explain the characteristics, uses, advantages, and disadvantages of each measure of dispersion.

Ankara University, Faculty of Political Science, Department of Economics

Chapter Four continued **Describing Data: Measures of Dispersion**

GOALS

When you have completed this chapter, you will be able to:

FOUR

Understand Chebyshev's theorem and the Normal, or Empirical Rule, as they relate to a set of observations.

FIVE

Compute and interpret quartiles and the interquartile range.

SIX

Construct and interpret box plots

SEVEN

Compute and understand the coefficient of variation and the coefficient of skewness.

Ankara University, Faculty of Political Science, Department of Economics

Mean Deviation

Mean Deviation: The arithmetic mean of the absolute values of the deviations from the arithmetic mean.

4-3

 $MD = \frac{\Sigma |X - X|}{n}$

Ankara University, Faculty of Political Science, Department of Economics,

Onur Özsoy 4/4/2018

EXAMPLE 1

4-4

 The weights of a sample of crates containing books for the bookstore are (in lbs.) 103, 97, 101, 106, 103.

- X = 510/5 = 102 lbs.
- $\Sigma = 1 + 5 + 1 + 4 + 1 = 12$
- MD = 12/5 = 2.4
- Typically, the weights of the crates are
 2.4 lbs. from the mean weight of 102 lbs.

Population Variance

4-5

Ankara University, Faculty of Political Science, Department of Economics,

The ages of the Dunn family are 2, 18, 34, and 42 years. What is the population variance?

$$\mu = \Sigma X / N = 96 / 4 = 24$$

$$\sigma^{2} = \Sigma (X - \mu)^{2} / N = 944 / 4 = 236$$

Ankara University, Faculty of Political Science, Department of Economics,

4/4/2018

Population Variance continued

An alternative formula for the population variance is:

$$\sigma^{2} = \frac{\Sigma X^{2}}{N} - \left(\frac{\Sigma X}{N}\right)^{2}$$

Ankara University, Faculty of Political Science, Department of Economics,

4-7

Onur Özsoy 4/4/2018

The Population Standard Deviation

The population standard deviation () is the square root of the population variance.

 For EXAMPLE 2, the population standard deviation is 15.19 (square root of 230.81).

4-8

Sample Variance

4-9

The sample variance estimates the population variance.

Conceptual Formula
$$= S^{2} = \frac{\Sigma(X - X)^{2}}{n - 1}$$

Computational Formula $= S^{2} = \frac{\Sigma X^{2} - \frac{(\Sigma X)^{2}}{n}}{n - 1}$

Ankara University, Faculty of Political Science, Department of Economics,

EXAMPLE 3

A sample of five hourly wages for various jobs on campus is: \$7, \$5, \$11, \$8, \$6. Find the variance.
 X = 37/5 = 7.40
 s² = 21.2/(5-1) = 5.3

Ankara University, Faculty of Political Science, Department of Economics,

Onur Özsoy 4/4/2018

Sample Standard Deviation

The sample standard deviation is the square root of the sample variance.
 In EXAMPLE 3, the sample standard deviation = 2.30

4-11

Measures of Dispersion: Ungrouped Data

For ungrouped data, the range is the difference between the highest and lowest values in a set of data. RANGE = Highest Value - Lowest Value • EXAMPLE 4: A sample of five accounting graduates revealed the following starting salaries: \$22,000, \$28,000, \$31,000, \$23,000, \$24,000. The range is \$31,000 - \$22,000 = \$9,000.

Onur Özsov

4/4/2018

13

Ankara University, Faculty of Political Science, Department of Economics,

Sample Variance For Grouped Data

The formula for the sample variance for grouped data used as an estimator of the population variance is:

$$S^{2} = \frac{\sum fX^{2} - \frac{(\sum fX)^{2}}{n}}{n-1}$$

 where f is class frequency and X is class midpoint.

Onur Özsov

4/4/2018

Interpretation and Uses of the Standard Deviation

 Chebyshev's theorem: For any set of observations, the minimum proportion of the values that lie within k standard deviations of the mean is at least 1 - 1/k, where k² is any constant greater than 1.

4-14

Interpretation and Uses of the Standard Deviation

Empirical Rule: For any symmetrical, bell-shaped distribution, approximately 68% of the $\pm 1\sigma$ observations will lie within of the mean (); approximately 95% of the observations will lie within of the mean () approximately 99.7% within of the mean (

Onur Özsov

4/4/2018

Ankara University, Faculty of Political Science, Department of Economics,

Relative Dispersion

4-17

The coefficient of variation is the ratio of the standard deviation to the arithmetic mean, expressed as a percentage:

$$CV = \frac{S}{\overline{X}}(100\%)$$

Ankara University, Faculty of Political Science, Department of Economics,

Onur Özsoy 4/4/2018

Skewness

4-18

Skewness is the measurement of the lack of symmetry of the distribution.
 The coefficient of skewness is computed from the following formula: Sk = 3(Mean - Median) / (Standard deviation)

Interquartile Range

4-19

The Interquartile range is the distance between the third quartile Q3 and the first quartile Q1.

 Interquartile range = third quartile first quartile = Q3 - Q1

First Quartile

The First Quartile is the value corresponding to the point below which 25% of the observations lie in an ordered data set. n

$$Q_1 = L + \frac{\frac{-CF}{4}}{f}(i)$$

where L=lower limit of the class containing Q1, CF= cumulative frequency preceding class containing Q1, f= frequency of class containing Q1, i= size of class containing Q1. 21

4/4/2018

Onur Özsov

Third Quartile

• The Third Quartile is the value corresponding to the point below which 75% of the observations lie in an ordered data set: $Q_3 = L + \frac{3n}{4} - CF$ f

where L=lower limit of the class containing Q3, CF= cumulative frequency preceding class containing Q3, f= frequency of class containing Q3, i= size of class containing Q3.
Ankara University, Faculty of Political Science, Department of Economics,

4/4/2018

<u>On</u>ur Özsoy

Quartile Deviation

The Quartile deviation is half the distance between the third quartile, Q₃, and the first quartile, Q₁.
QD = [Q₃ - Q₁]/2

EXAMPLE 5

4-23

If the third quartile = 24 and the first quartile = 10, what is the quartile deviation? The interquartile range is 24 - 10 = 14; thus the quartile deviation is 14/2 = 7.

Percentile Range

Each data set has 99 percentiles, thus dividing the set into 100 equal parts.
 The provide range is the distance between two stated percentiles. The 10-to-90 percentile range is the distance between the 10th and 90th percentiles.

Formula For Percentiles

$Lp = (n+1)\frac{P}{100}$

Ankara University, Faculty of Political Science, Department of Economics,

4-25

Onur Özsoy 4/4/2018

Box Plots

4-26

A box plot is a graphical display, based on quartiles, that helps to picture a set of data.

 Five pieces of data are needed to construct a box plot: the Minimum Value, the First Quartile, the Median, the Third Quartile, and the Maximum Value.

EXAMPLE 6

4-27

 Based on a sample of 20 deliveries, Marco's Pizza determined the following information: minimum value = 13 minutes, Q1 = 15 minutes, median = 18 minutes, Q3 = 22 minutes, maximum value = 30 minutes. Develop a box plot for the delivery times.

4-28

Ankara University, Faculty of Political Science, Department of Economics,

ır Özsoy 4