Statistics 2 Chapter 2

Review 2 The Normal Probability Distribution

Chapter 2

ormal
 nlity Distribution

GOALS

When you have completed this chapter, you will be able to:

ONE

List the characteristics of the normal probability distribution.

TWO

Define and calculate z values.

THREE

Determine the probability that an observation will lie between two points using the standard normal distribution.

FOUR

Determine the probability that an observation will be above or below a given value using the standard normal distribution.

Chapter 2
 0
 Concepts

GOALS

When you have completed this chapter, you will be able to:

FIVE

Compare two or more observations that are on different probability distributions.

SIX

Use the normal distribution to approximate the binomial probability distribution.

Characteristics of a Normal Probability Distribution

- The normal curve is bell-shaped and has a single peak at the exact center of the distribution.
- The arithmetic mean, median, and mode of the distribution are equal and located at the peak.
Half the area under the curve is above the peak, and the other half is below it.

Characteristics of a Normal Probability Distribution

- The normal probability distribution is symmetrical about its mean.
- The normal probability distribution is asymptotic - the curve gets closer and closer to the x-axis but never actually touches it.

Characteristics of a Normal Distribution

Normal curve is symmetrical

Theoretically, curve extends to infinity

Mean, median, and mode are equal

The Standard Normal Probability Distribution

- A normal distribution with a mean of 0 and a standard deviation of 1 is called the standard normal distribution.
o Z value: The distance between a selected value, designated X, and the popஎation mean , divided by the populationXstandard deviation,

EXAMPLE 1

- The monthly incomes of recent MBA graduates in a large corporation are normally distributed with a mean of $\$ 2000$ and a standard deviation of \$200. What is the Z value for an income of $\$ 2200$? An income of $\$ 1700$? For $X=\$ 2200, Z=(2200-2000) / 200=1$.

EXAMPLE 1 continued

- For $X=\$ 1700, Z=(1700-2000) / 200=-1.5$
- A Z value of 1 indicates that the value of $\$ 2200$ is 1 standard deviation above the mean of $\$ 2000$, while a Z value of $\$ 1700$ is 1.5 standard deviation below the mean of $\$ 2000$.

Areas Under the Normal Curve

- About 68 percent of the area under the normal curve is within one standard deviatipn \pm aft the mean.
- About 95 percent is within two standard deviations of the megh $\pm 2 \sigma$ 99.74 percent is within three standard deviations of the meq $\mu \pm 3 \sigma$

Areas Under the Normal Curve

> Between:
> $1.68 .26 \%$
> $2.95 .44 \%$
> $3.99 .74 \%$

EXAMPLE 2

- The daily water usage per person in New Providence, New Jersey is normally distributed with a mean of 20 gallons and a standard deviation of 5 gallons.
About 68% of the daily water usage per person in New Providence lies fead $200 \pm 1(5)$. what two values?

That is, about 68% of the daily water usage will lie between 15

EXAMPLE 3

- What is the probability that a person from New Providence selected at random will use less than 20 gallons per day?
- The associated Z value is $Z=(20-$ $20) / 5=0$. Thus, $\mathrm{P}(\mathrm{X}<20)=\mathrm{P}(\mathrm{Z}<0)=.5$
What percent uses between 20 and 24 gallons?
The Z value associated with $X=20$ is $Z=0$ and with $X=24, Z=(24-20) / 5=.8$. Thus, nem $\mathrm{P}(20<x<24)=10 \times 2 \times .8)=28.81 \%$

EXAMPLE 3

EXAMPLE 3

- What percent of the population uses between 18 and 26 gallons?
- The Z value associated with $X=18$ is $Z=(18-20) / 5=-.4$, and for $X=26$, $\mathrm{Z}=(26-20) / 5=1.2$. Thus $\mathrm{P}(18<\mathrm{X}<26)$ $=P(-.4<Z<1.2)=.1554+.3849=.5403$

EXAMPLE 4

- Professor Mann has determined that the final averages in his statistics course is normally distributed with a mean of 72 and a standard deviation of 5 . He decides to assign his grades for his current course such that the top 15% of the students receive an A . What is the lowest average a student can receive to earn an A ?
Let X be the lowest average. Find X such that $P(X>X)=.15$. The

EXAMPLE 4

$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$

EXAMPLE 5

- The amount of tip the servers in an exclusive restaurant receive per shift is normally distributed with a mean of $\$ 80$ and a standard deviation of $\$ 10$. Shelli feels she has provided poor service if her total tip for the shift is less than $\$ 65$. What is the probability she has provided poor service? Let X be the amount of tip. The Z value associated with $X=65$ is $Z=165-$ 80)/10=
nem -7.5. ThUS $P(x<65)=P(\cdot(Z<-1.5)=.5-$

The Normal Approximation

 to the Binomial- Using the normal distribution (a continuous distribution) as a substitute for a binomial distribution (a discrete distribution) for large values of n seems reasonable because as n increases, a binomial distribution gets closer and closer to a normal distribution.
The normal probability distribution is generally deemed a good
π apmeximation to the binomial
-... probability distribution when n and nil L ara bath ciratitar than 5

The Normal Approximation

- Recall for the binomial experiment:

There are only two mutually exclusive outcomes (success or failure) on each trial.
A binomial distribution results from counting the number of successes.

Each trial is independent.
The probability is fixed from trial to trial, and the number of trials n is also fixed.

Binomial Distribution for an n
 and where $\pi=.50$

Continuity Correction Factor

- The value .5 subtracted or added, depending on the problem, to a selected value when a binomial probability distribution (a discrete probability distribution) is being approximated by a continuous probability distribution (the normal distribution).

EXAMPLE 6

- A recent study by a marketing research firm showed that 15% of American households owned a video camera. A sample of 200 homes is obtained.
Of the 200 homes sampled how many would you expect to have video cameras?

$$
\mu=n \pi=(.15)(200)=30
$$

EXAMPLE 6

- What is the variance?

$$
\sigma^{2}=n \pi(1-\pi)=(30)(1-.15)=25.5
$$

- What is the standard deviation?

$$
\sigma=\sqrt{25.5}=5.0498
$$

- What is the probability that less than 40 homes in the sample have video cameras? We need $P(X<40)=P(X<39)$. Sosusing the normal asproximation, $P(X<39.5)$

P[Z
$(39.5-30) / 5.0498]=P\left(\begin{array}{ll}Z & 1.8812)\end{array}\right.$
$P(Z<1.88)=.5+.4699+.9699$

EXAMPLE 6

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Z}=1.88) \\
& .5+.4699 \\
& =.9699
\end{aligned}
$$

$$
\mathrm{Z}=1.88
$$

