#### Statistics 2 Chapter 3 Sampling Methods and Sampling distributions

Ankara University, Faculty of Political Science, Department of Economics, Onur Özsoy 4/4/2018

#### **Chapter 3 Sampling Methods and Sampling Distributions**

#### GOALS

When you have completed this chapter, you will be able to:

#### ONE

Explain why a sample is the only feasible way to learn about a population.

#### TWO

Explain methods for selecting a sample.

#### THREE

Define and construct a sampling distribution of the sample means.

#### FOUR

Explain the central limit theorem.

#### **Chapter 3** continued **Sampling Methods and Sampling Distributions**

#### GOALS

When you have completed this chapter, you will be able to:

#### **FIVE**

Calculate confidence intervals for means and proportions.

#### SIX

Determine the sample size for attribute and variable sampling.

#### Why Sample the Population?

- The physical impossibility of checking all items in the population.
- The cost of studying all the items in a population.
- The sample results are usually adequate.
- Contacting the whole population would often be time-consuming.
- The destructive nature of certain tests.

#### **Probability Sampling**

8-4

 A probability sample is a sample selected in such a way that each item or person in the population being studied has a known likelihood of being included in the sample.

# Methods of Probability Sampling

- Simple Random Sample: A sample formulated so that each item or person in the population has the same chance of being included.
- Systematic Random Sampling: The items or individuals of the population are arranged in some order. A random starting point is selected and then every kth member of the population is selected for the sample.

8-5

# Methods of Probability Sampling Stratified Random Sampling: A population is first divided into subgroups, called strata, and a sample is selected from each stratum.

- Cluster Sampling: A population is first divided into subgroups (strata), and a sample of the strata is selected. The sample is then taken from these selected strata.
- A sampling error is the difference between a sample statistic and its corresponding parameter.

Ankara University, Faculty of Political Science, Department of Economics,

# Sampling Distribution of the Sample Means

The sampling distribution of the sample means is a probability distribution consisting of all possible sample means of a given sample size selected from a population, and the probability of occurrence associated with each sample mean.

#### EXAMPLE 1

The law firm of Hoya and Associates has five partners. At their weekly partners meeting each reported the number of hours they charged clients for their services last week.

| Partner            | Hours                    |
|--------------------|--------------------------|
| Dunn               | 2 2                      |
| H ard y            | 2 6                      |
| K iers             | 3.0                      |
| M alinows          | x i 2 6                  |
| If two partners of | ire selected randomly, h |
|                    | amples are possible?     |

 $\mathcal{N}$ 

#### EXAMPLE 1 continued

8-9

# • This is the combination of 5 objects taken 2 at a time $c_2$ Th(at)is[(2!)(3!)]=10

| P artn ers | T o ta l | M e a n |
|------------|----------|---------|
| 1 , 2      | 4 8      | 2 4     |
| 1,3        | 5 2      | 2 6     |
| 1,4        | 4 8      | 2 4     |
| 1,5        | 4 4      | 2 2     |
| 2,3        | 5 6      | 2 8     |
| 2,4        | 5 2      | 2 6     |
| 2,5        | 4 8      | 2 4     |
| 3,4        | 5 6      | 2 8     |
| 3,5        | 5 2      | 2 6     |
| 4 , 5      | 4 8      | 2 4     |

Ankara University, Faculty of Political Science, Department of Economics,

Onur Özsoy 4/4/2018



8-10

 Organize the sample means into a sampling distribution.

| S am ple | Frequency | Relative    |
|----------|-----------|-------------|
| M ean    |           | Frequency   |
|          |           | probability |
| 22       | 1         | 1/10        |
| 24       | 4         | 4/10        |
| 26       | 3         | 3/10        |
| 28       | 2         | 2/10        |

Onur Özsoy 4/4/2018

#### EXAMPLE 1 continued

8-11

 Compute the mean of the sample means and compare it with the population mean:

- > The mean of the sample means = [(22)(1) + (24)(4) + (26)(3) + (28)(2)]/10=25.2
- The population mean = (22+26+30+26+22)/5 = 25.2
- Observe that the mean of the sample means is equal to the population mean.

#### Central Limit Theorem

For a population with a mean and a variance  $\sigma^2$ , the sampling distribution of the means of all possible samples of size n generated from the population will be approximately normally distributed - with the mean of the sampling distribution  $\mu$ equal to and the variance equal to - assuming that the sample size is sufficiently large.

4/4/2018

Onur Özsov

# Point Estimates

- A Point estimate is one value ( a point) that is used to estimate a population parameter.
- Examples of point estimates are the sample mean, the sample standard deviation, the sample variance, the sample proportion etc...
- EXAMPLE 2: The number of defective items produced by a machine was recorded for five randomly selected hours during a 40-hour work week. The observed number of defectives were 12, 4, 7, 14, and 10. So the sample mean is 9.4. Thus a point estimate for the hourly mean number of defectives is 9.4.

Onur Özsoy

4/4/2018

14

Ankara University, Faculty of Political Science, Department of Economics,

#### Interval Estimates

- An Interval Estimate states the range within which a population parameter probably lies.
- The interval within which a population parameter is expected to occur is called a confidence interval.

15

 The two confidence intervals that are used extensively are the 95% and the 99%.

Onur Özsov

4/4/2018

Ankara University, Faculty of Political Science, Department of Economics,

#### Interval Estimates

8-15

- A 95% confidence interval means that about 95% of the similarly constructed intervals will contain the parameter being estimated, or 95% of the sample means for a specified sample size will lie within 1.96 standard deviations of the hypothesized population mean.
- For the 99% confidence interval, 99% of the sample means for a specified sample size will lie within 2.58 standard deviations of the hypothesized population mean.

Onur Özsoy 4/4/2018

# Standard Error of the Sample • The sample means is the standard deviation of the sampling distribution of the sample means. • It is computed by is the symbol for the standard error of the sample means. $\sqrt[\sigma]{n}$ $\overline{x}$ is the standard deviation of the population. $\odot \sigma n$ is the size of the sample.

## Standard Error of the Sample Means

• If *j* is not known and  $n \ge 30$ , the standard deviation of the sample, designated s, is used to approximate the population standard deviation. The formula for the standard error then becomes: *S* 

$$S_{\overline{x}} = \overline{\sqrt{n}}$$

Ankara University, Faculty of Political Science, Department of Economics,

8-17

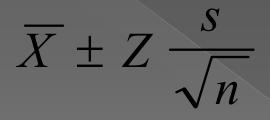
Onur Özsoy 4/4/2018

# 95% and 99% Confidence Intervals for µ

 The 95% and 99% confidence intervals for are constructed as follows when 30
 95% CI for the population mean is given by X ± 1.96 - s / √n

• 99% CI for the population mean is given by  $\overline{X} \pm 2.58 \frac{1}{\sqrt{n}}$ 

Onur Özsov


4/4/2018

19

Ankara University, Faculty of Political Science, Department of Economics,

# Constructing General Confidence Intervals for µ

In general, a confidence interval for the mean is computed by:



#### EXAMPLE 3

- The Dean of the Business School wants to estimate the mean number of hours worked per week by students. A sample of 49 students showed a mean of 24 hours with a standard deviation of 4 hours.
- The point estimate is 24 hours (sample mean).
- What is the 95% confidence interval for the average number of hours worked per week by the students?

#### EXAMPLE 3 continued

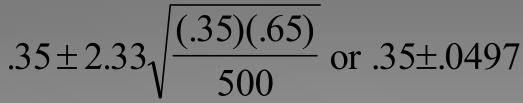
8-21

Using the 95% CI for the population mean, w@4949496(4/7) = 22.88to25.12
The endpoints of the confidence interval are the confidence limits. The lower confidence limit is 22.88 and the upper confidence limit is 25.12

# Confidence Interval for a Population Proportion

The confidence interval for a population proportion is estimated by:

 $p \pm z\sigma_{\overline{p}}$ • where  $\sigma_{\overline{p}}$  is the standard error of the proportion:


$$\sigma_{\overline{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Ankara University, Faculty of Political Science, Department of Economics,

Onur Özsoy 4/4/2018

#### EXAMPLE 4

- Matt Williams, a financial planner, is studying the retirement plans of young executives. A sample of 500 executives who own their own home revealed that 175 planned to sell their homes and retire to Arizona. Develop a 98% confidence interval for the proportion of executives that plan to sell and move to Arizona.
- Here, n=500, p=175/500=.35, and z=2.33
  the 98% CI is



Ankara University, Faculty of Political Science, Department of Economics, Onur Özsoy

by 4/4/2018

## Finite-Population Correction Factor

- A population that has a fixed upper bound is said to be finite.
- For a finite population, where the total number of objects is N and the size of the sample is n, the following adjustment is made to the standard errors of the sample means and the proportion:
- Standard error of the sample means:  $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$

Onur Özsov

4/4/2018

25

Ankara University, Faculty of Political Science, Department of Economics,

# Finite-Population Correction Factor

> Standard error of the sample proportions:

 $\sigma_{p} = \sqrt{\frac{p(1-p)}{n}} \sqrt{\frac{N-n}{N-1}}$ This adjustment is called the finite-population correction factor.

Note: If n/N < .05, the finite-population</li>

correction factor is ignored.

#### EXAMPLE 5

- Given the information in EXAMPLE 4, construct a 95% confidence interval for the mean number of hours worked per week by the students if there are only 500 students on campus.
- Since n/N = 49/500 = .098>.05, we have to use the finite population correction factor.  $24 \pm 1.96(\frac{4}{\sqrt{49}})(\sqrt{\frac{500-49}{500-1}}) = [22.9352, 25.0648]$

#### Selecting a Sample Size

There are 3 factors that determine the size of a sample, none of which has any direct relationship to the size of the population. They are:
The degree of confidence selected.

- The maximum allowable error.
- > The variation of the population.

#### Variation in the Population

• Sample Size for the Mean: A convenient computational formula for determining n is:  $n = \left(\frac{Z \cdot S}{E}\right)^2$ 

• where : E is the allowable error, Z is the z score associated with the degree of confidence selected, and S is the sample deviation of the pilot survey.

Ankara University, Faculty of Political Science, Department of Economics,

Onur Özsoy

4/4/2018

29

#### EXAMPLE 6

8-29

 A consumer group would like to estimate the mean monthly electric bill for a single family house in July.
 Based on similar studies the standard deviation is estimated to be \$20.00.
 A 99% level of confidence is desired, with an accuracy of \$5.00. How
 Igrg 22589(20)9532reguise 024 ≈ 107

Onur Özsov

#### Sample Size for Proportions

The formula for determining the sample size in the case of a proportion is:

$$n = p(1-p)\left(\frac{Z}{E}\right)^2$$

 where p is the estimated proportion, based on past experience or a pilot survey; z is the z value associated with the degree of confidence selected; E is the maximum allowable error the researcher will tolerate.

#### EXAMPLE 7

8-31

The American Kennel Club wanted to estimate the proportion of children that have a dog as a pet. If the club wanted the estimate to be within 3% of the population proportion, how many children would they need to contact? Assume a 95% level of confidence and that the club estimated that 30% of the children have a dog as a pet.  $n = (.30)(.70)(1.96/.03)^2 = 896.3733 \approx 897$