MANAGERIAL ECONOMICS CHAPTER 2
 FUNDAMENTAL ECONOMIC CONCEPT

Fundamental Economic Concepts

Chapter 2

- Total, Average, and Marginal
- Finding the Optimum Point
- Present Value, Discounting \& NPV
- Risk and Uncertainty
- Risk-Return \& Probability
- Standard Deviation \& Coefficient of Variation
- Expected Utility \& Risk-Adjusted Discount Rates
- Use of a z-value

How to Maximize Profits

- Decision Making Isn't Free
- Max Profit \{ A, B\}, but suppose that we don't know the Profit $\{\mathrm{A}\}$ or the Profit $\{\mathrm{B}\}$
- Should we hire a consultant for $\$ 1,000$?
- Should we market an Amoretto Flavored chewing gum for adults?
- complex combination of marketing, production, and financial issues

Break Decisions Into Smaller Units: How Much to Produce?

- Graph of output and profit
- Possible Rule:
- Expand output until profits turn down
- But problem of local maxima os. global maximum

Average Profit $=$ Profit $/$

)

PROFITS

Marginal Profits $=\Delta \Pi / \Delta \mathbf{Q}$

ㅁ profits of the last unit produced

- maximum marginal profits occur at the inflection point (A)
- Dec sion Rule:

$$
\text { nal profits }=0
$$

profits
max

average profits marginal profits

Using Equations

q profit $=f($ quantity) or

- $\Pi=f(\mathrm{Q})$
- dependent variable \& independent variable(s)
-average profit = Π / Q
- marginal profit $=\Delta \Pi / \Delta Q$

Optimal Decision (one period) example of using marginal reasoning

- The scale of a project should expand until
- $\mathrm{MB}=\mathrm{MC}$

Fxample: screening for prostate or breast cancer

- How often?

Present Value

- Present value recognizes that a dollar received in the future is worth less than a dollar in hand today.
- To compare monies in the future with today, the future dollars must be discounted by a present value interest factor, P VIT $=1 /(1+\mathrm{i})$, where i is the interest compensation for postponing receiving cash one period.
- For dollars received in n periods, the discount factor is $\mathrm{PV}^{2} \mathrm{FF}_{\mathrm{n}}=[1 /(1+\mathrm{i})]^{\mathrm{n}}$
. NPV = Present value of future returns minus Initial outlay.
- This is for the simple example of a single cost today yielding a benefit or stream of benefits in the future.
\square For the more general case, NPV = Present value of all cash flows (both positive and negative ones).
- NPV Rule: Do all projects that have positive net present values. By doing this, the manager maximizes shareholder wealth.
- Some investments may increase NPV, but at the same time, they may increase risk.

Net Present Value (NPV)

- Most business decisions are long term
- capital budgeting, product assortment, etc.
- Objective: max the present value of profits
- NPV = PV of future returns - Initial Outlay
$\square \quad \mathrm{V}=\sum_{\mathrm{t}=0} \mathrm{NCF}_{\mathrm{t}} /\left(1+\mathrm{r}_{\mathrm{t}}\right)^{\mathrm{t}}$
- where NCF_{t} is the net cash flow in period t
- Good projects have
- High NCF's
- Low rates of discount

Sources of Positive NPVs

- Brand identify and loyalty
- Control over distribution
- Patents or legal barriers to entry
- Superior materials

Ankara University, Faculty of Political
Science, Department of Econonice, Onic

Risk and Uncertaint

- Most decisions involve a gamble
- Probabilities can be known or unknown, and outcomes can be known or unknown
- ㅁ Fik -- exists when:
- Possible outcomes and probabilities are known
- e.g., Roulette Wheel or Dice
- Uncertainty -- exists when:
- Possible outcomes or probabilities art

- e.g., Drilling for Oil in an unknown field

Concepts of Risk

- When probabilities are known, we can analyze risk using robability distributions
- Assign a probability to each state of nature, and be exhaustive, so that $\sum \mathrm{p}_{\mathrm{i}}=1$

States of Nature

Strategy

$$
\begin{array}{cc}
\text { Recession } & \text { Economic Boom } \\
p=.30 & p=.70
\end{array}
$$

Expand Plant
Don't Expand

Payoff Matrix

- Payoff Matrix shows payoffs for each state of nature, for each strategy
- Ex ected Value $=\mu=\Sigma \mathrm{ri}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}$.

ㅁ $r=\quad \mathrm{p}_{\mathrm{i}}=(-40)(.30)+(100)(.70)=58$ if Expand
合 $r=\mathrm{r}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}=(-10)(.30)+(50)(.70)=32$ if Don't
Expand

- Standard Deviation $=\sigma=\sqrt{\Sigma\left(r_{i}-r^{\wedge}\right)^{2} \cdot p_{i}}$

Example of

Finding Standard Deviations

$$
\begin{aligned}
& \sigma_{\text {expand }}=\text { SQRT\{ }(-40-58)^{2}(.3)+(100- \\
& \left.58)^{2}(.7)\right\}=\text { SQRT }\left\{(-98)^{2}(.3)+(42)^{2}(.7)\right\}= \\
& \text { SQRT } 4116\}=64.16 \\
& \sigma_{\text {don't }}=\operatorname{SQRT}\left\{(-10-32)^{2}(.3)+(50-32)^{2}(.7)\right\} \\
& =\text { SQRT }\left\{(-42)^{2}(.3)+(18)^{2}(.7)\right\}= \\
& \text { SQRT }\{756\}=27.50
\end{aligned}
$$

Expanding has a greater standard deviation, but higher expected return.

Coefficients of Variation or Relative Risk

- Coefficient of Variation (C.V.) =
- C.V. is a measure of risk per dollar expected return.
ㅁ. The discount rate for present values depends on the risk class of the investment.
- Look at similar investments
- Corporate Bonds, or Treasury Bonds
- Common Domestic Stocks, or Foreign Stocks

$$
\begin{aligned}
& \text { Projects of Different Sizes: } \\
& \text { If double the size, the } C . V \text {. is not } \\
& \text { changed!!!! }
\end{aligned}
$$

Coefficient of Variation is good for comparing projects of different sizes

Example of Tw

A: | Prob $\quad X$ | $\}$ | $R=15$ | |
| ---: | :--- | :--- | :---: |
| .5 | 10 | $\}$ | $\sigma=\operatorname{SQRT}\left\{(10-15)^{2}(.5)+(20-15)^{2}(.5)\right]$ |
| .5 | 20 | $\}$ | $=\operatorname{SQRT}\{25\}=5$ |

$$
\text { C.V. }=5 / 15=.333
$$

B:	Prob
.5	20
.5	40

$$
R=30
$$

$$
\sigma=\operatorname{SQRT}\left\{(20-30)^{2}\left((.5)+(40-30)^{2}(.5)\right]\right.
$$

$$
=\operatorname{SQRT}\{100\}=10
$$

Continuous Probability Distributions (v/5, Discrete)

- Expected valued is the mode for symmetric distributions

What Went Wrong at LTCM?

- Long Term Capital Management was a 'hedge fund' run by some top-notch finance experts (1993-1998)
- LTCM looked for small pricing deviations between interest rates and derivatives, such as bond futures.
- They earned 45\% returns -- but that may be due to high risks in their type of arbitrage activity.
- The Russian default in 1998 changed the risk level of government debtrand LTCM lost \$2
4/4/2018 1 -11

The St. Petersburg Paradox

- The St. Petersburg Paradox is a gamble of tossing a fair coin, where the payoff doubles for every consecutive head that appears. The expected monetary value of this gamble is: $\$ 2 \cdot(.5)+\$ 4 \cdot(.25)+\$ 8 \cdot(.125)$ $+\$ 16 \cdot(.0625)+\ldots=1+1+1+\ldots=\infty$.
- But no one would be willing to wager all he or she owns to get into this bet. It must be that people make decisions by criteria other than maximizing expected monetary payoff.

Expected Utility Analysis to Compare Risks

- Utility is "satisfactio n"
- Each payoff has a utility
- As payoffs rise, utility rises
- Risk Neutral -- if indifferent between risk \& a fair bet

Risk Averse

- Prefer a certain amount to a fair bet

Risk Seeking

- Prefer a fair bet to a certain amount

Expected Utility: an example

- Suppose we are given a quadratic utility function:

ㅁ $\mathrm{U}=.09 \mathrm{X}-.00002 \mathrm{X}^{2}$

- Gamble: 30\% probability of getting 100; 30% of getting 200; and a 40% probability of getting 400 .
- Versus a certain $\$ 150$?
- $\mathrm{U}(150)=13.05$ (plug X=150 into utility function)
ㅁ Find "Expected Utility" of the gamble
- $\mathrm{EU}=\Sigma \mathrm{p}_{\mathrm{i}} \mathrm{U}\left(\mathrm{X}_{\mathrm{i}}\right)$
- $\mathrm{EU}=.30(8.8)+.30(17.2)+.40(32.8)=20.92$

Risk Adjusted Discount Rates

- Riskier projects should be discounted at higher discount rates
口 $\mathrm{PV}=\Sigma \pi_{\mathrm{t}} /(1+\mathrm{k})^{\mathrm{t}}$ where k varies with risk and π_{t} are cash flows.
口 $\mathrm{k}_{\mathrm{A}}>\mathrm{k}_{\mathrm{B}}$ as in diagram since A is riskier

Sources of Risk Adjusted Discount Rates

- Market-based rates
- Look at equivalent risky projects, use that rate
- Is it like a Bond, Stock, Venture Capital?
- Capital Asset Pricing

Model (CAPM)
 Project's "beta" and the market return ${ }^{\text {Science. Deparatento of Economics, Onur }}$

z-Values

$\square \quad z$ is the number of standard deviations away from the mean
$\square z=(\sim \wedge \uparrow) / \sigma$

- 68% of the time within 1 standard deviation
- 95\% of the time within 2 standard deviations
- 99% of the time within 3 standard deviations

Problem: income has a mean of $\$ 1,000$ and dard deviation of $\$ 500$.

What's the chance of losing money?

Diversification

The expected return on a portfolio is the weighted average 0 expected returns in the portfolio.
Portfolio risk depends on the weights, standard deviations of the securities in the portfolio, and on the correlation coefficients between securities.
The risk of a two-security portfolio is:

$$
\sigma_{\mathrm{p}}=\sqrt{ }\left(\mathrm{W}_{\mathrm{A}}^{2} \cdot \sigma_{\mathrm{A}}^{2}+\mathrm{W}_{\mathrm{B}}^{2} \cdot \sigma_{\mathrm{B}}^{2}+2 \cdot \mathrm{~W}_{\mathrm{A}} \cdot \mathrm{~W}_{\mathrm{B}} \cdot \rho_{\mathrm{AB}} \cdot \sigma_{\mathrm{A}} \cdot \sigma_{\mathrm{B}}\right)
$$

\square If the correlation coefficient, $\rho_{A B}$, equals one, no risk reduction is achieved.

- When $\rho_{\mathrm{AB}}<1$, then $\sigma_{\mathrm{p}}<\mathrm{w}_{\mathrm{A}} \cdot \sigma_{\mathrm{A}}+\mathrm{w}_{\mathrm{B}} \cdot \sigma_{\mathrm{B}}$. Hence, portfolio risk is less than the weighted average of the standard deviations in the portfolio.

Ankara University, Faculty of Political
Science, Department of Economics, Onur

