MANAGERIAL ECONOMICS CHAPTER 4

Estimation of Demand

Estimation of Demand Chapter 4

- Objective: Learn how to estimate a demand function using regression analysis, and interpret the results
ㅁ. A chief uncertainty for managers -- what will happen to their product.
- forecasting, prediction \& estimation need for data: Frank Knight: "If you think you can't measure something, measure it anyway."

Sources of information on demand

 - Consumer Surveys- ask a sample of consumers their attitudes
- Consumer Clinics
- experimental groups try to emulate a market (Hawthorne effect)
ㅁ.Market Experiments
- get demand information by trying different prices
- Historical Data
what happened in the past is guide to the future

Plot Historical Data

- Look at the relationship of price and quantity over time
- Plot it
- Is it a demand curve or a supply curve? Problem -- not held other things equal

quantity

Identification Problem

- $Q=a+b$ P can appear upward or downward sloping.
- Suppose Supply varies and Demand is FIXED.
- All points lie on the Demand curve

quantity

Suppose SUPPLY is Fixed

- Let DEMAND shift and supply FIXED.
- All Points are on the SUPPLY curve.
- We say that the SUPPLY curve is identified.

quantity

When both Supply and Demand Varyp

- Often both supply and demand vary.
- Equilibrium points are in shaded region.
- A regression of Q
$=a+b$ P will be neither a demand nor a supply curve.

quantity

Statistical Estimation of the a Demand Function

- Steps to take:
- Specify the variables -- formulate the demand model, select a Functional Form
linear
double log quadratic
$\mathrm{Q}=\mathrm{a}+\mathrm{b} \cdot \mathrm{P}+\mathrm{c} \bullet \mathrm{I}$
$a+b \cdot \ln P+c \cdot \ln I$
$Q=a+b \cdot P$
- Estimate the parameters --
determine which are statistically significant try other variables \& other functional forms Develop forecasts from the model

Specifying the Variables

\square Depende amable -- quantity in units, quantity in dollar value (as in sales revenues)
\square Independent Variables -- variables thought to influence the quantity demanded

- Instrumental Variables -- proxy variables for the item wanted which tends to have a relatively high correlation with the desired variable: e.g., Tastes Time Trend

Functional Forms

\square Linear

$$
Q=a+b \cdot P+c \cdot I
$$

- The effect of each variable is constant
- The effect of each variable is independent of other variables
- Price elasticity is: $\mathrm{E}_{\mathrm{P}}=\mathrm{b} \bullet \mathrm{P} / \mathrm{Q}$ Income elasticity is: $\mathrm{E}_{\mathrm{I}}=\mathrm{c} \bullet \mathrm{I} / \mathrm{Q}$

Functional Forms

\square Multiplicative $\mathbf{Q}=\mathbf{A} \bullet \mathbf{P}^{\mathrm{b}} \cdot \mathrm{I}^{\mathrm{c}}$

- The effect of each variable depends on all the other variables and is not constant
- It is \log linear

$$
\operatorname{Ln} Q=a+b \cdot \operatorname{Ln} P+c \cdot \operatorname{Ln}
$$

I
the price elasticity is b
the income elasticity is c

Simple Linear Regression

- $Q_{t}=a+b P_{t}+\varepsilon_{t}$
- time subscripts \& error term
- Find "best fitting" line $\varepsilon_{t}=Q_{t}-a-b P_{t}$ $\varepsilon_{t}{ }^{2}=\left[Q_{t}-a-b P_{t}\right]^{2}$.
- $\min \Sigma \varepsilon_{\mathrm{t}}{ }^{2}=\Sigma\left[\mathrm{Q}_{\mathrm{t}}-\mathrm{a}-\mathrm{b} \mathrm{P}_{\mathrm{t}}\right]$ 2.
- Solution: $\mathrm{b}=$ $\operatorname{Cov}(\mathrm{Q}, \mathrm{P}) / \operatorname{Var}(\mathrm{P})$ and $\mathrm{a}=$ mean(Q) - b• mean(P) ficm

Ordinary Least Squares:

Assumptions \& Solution Methods

- Error term has a mean of zero and a finite variance
- Dependent variable is random
- The independent variables are indeed independent
- Spreadsheets - such as
- Excel, Lotus 1-2-3, Quatro Pro, or Joe Spreadsheet
- Statistical calculators
- Statistical programs such as
- Minitab
- SAS
- SPSS
- ForeProfit

Demand Estimation Case (p. 173)

Riders $=785-2.14 \cdot$ Price $+.110 \cdot$ Pop +. $0015 \cdot$ Income $+.995 \cdot$ Parking
Predictor Coef Stdevt-ratio p
Constant 784.7 396.31 .98 . 083
Price $\quad-2.14$. $4890-4.38$. 002
Pop . 1096.2114 .520 . 618
Income .0015.03534 .040 . 966
Parking . 9947.57151 .74 . 120

$$
R-s q=90.8 \% \quad \text { R-sq }(a d j)=86.2 \%
$$

coelticients of Determination:

R^{2}

- R-square -- \% of variation Q in dependent variable that is explained
- Ratio of $\Sigma\left[\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}}\right]^{2}$ to $\Sigma\left[Q_{t}-Q_{t}\right]^{2}$.
- As more variables are included, R-square rises
- Adjusted R-square, however, can decline

T-tests

- Different
samples would yield different coefficients
- Test the hypothesis that coefficient equals zero

$$
\begin{aligned}
& H_{0}: b=0 \\
& H_{a}: b \neq 0
\end{aligned}
$$

- RULE: If absolute value of the estimated t > Critical-t, then REJECT Ho.

It's significant.
\square estimated $t=(b-0) / \sigma_{b}$

- critical t

Large Samples, critical $\mathrm{t} \cong 2$ $\mathrm{N} \geq 30$

- Small Samples, critical t is on

Student's t-table
D.F. = \# observations, minus number of independent variables, minus one.

- $\mathrm{N}<30$

$$
\begin{gathered}
\text { Double Log or Log } \\
\text { Linear }
\end{gathered}
$$

- With the double \log form, the coefficients are elasticities
- $\mathrm{Q}=\mathrm{A} \cdot \mathrm{P}^{\mathrm{b}} \cdot \mathrm{I}^{\mathrm{c}} \cdot \mathrm{P}_{\mathrm{s}}{ }^{\mathrm{d}}$
- multiplicative functional form
- So:

$$
\operatorname{Ln} \mathrm{I}+\mathrm{d} \cdot \operatorname{Ln} \mathrm{P}_{\mathrm{s}}
$$

ㅁ. Transform all variables into natural logs

- Called the ouble log, since logs are on the left and the right hand sides. Ln and Log are used interchangeably. We use only natural logs.

Econometric Problems

- Simultaneity Problem -- Indentification Problem:
- some independent variables may be endogenous
- Multicollinearity
- independent variables may be highly related
- Serial Correlation -- Autocorrelation
- error terms may have a pattern
- Heteroscedasticity
error terms may have non-constant variance

Identification Problem

- Problem:
- Coefficients are biased
- Symptom:
- Independent variables are known to be part of a system of equations
■ Solution:
Use as many independent variables as possible

Multicollinearity

- Sometimes independent variables aren't independent.
- EXAMPLE: $Q=E g g s$
$Q=a+b P d+c$ Pg
where Pd is for a dozen and Pg is for a gross. PROBLEM
- Coefficients are UNBIASED, but tvalues are small.
- Symptoms of Multicollinearity -high R-sqr, but low tvalues.

$$
Q=22-7.8 P_{d}-.9 P_{g}
$$

$$
(1.2) \quad(1,45)
$$

R-square $=.87$
t-values in parentheses

- Solutions:
- Drop a variable.
- Do nothing if forecasting

Serial Correlation

- Problem:
- Coefficients are unbiased
- but t-values are unreliable
- Symptoms:
- look at a scatter of the error terms to see if there is a pattern, or
- see if Durbin Watson statistic is far from 2.
- Solution:

Find more data
Take first differences of data: $\Delta \mathrm{Q}=\mathrm{a}+\mathrm{b} \bullet \Delta \mathrm{P}$

Scatter of Error Terms Serial Correlation

Heteroscedasticity

■ Problem:

- Coefficients are unbiased
- t-values are unreliable
- Symptoms:
- different variances for different sub-samples
- scatter of error terms shows increasing or decreasing dispersion
- Solution:

Transform data, e.g., logs
Take averages of each subsample: weighted least squares

Scatter of Error Terms

Height
Heteroscedasticity

Nonlinear Forms Appendix 4A

- Semi-logaril mic transy formations.

Sometimes taking the logarithm of the dependent variable or an independent variable improves the R^{2}. Examples are:

- $\log Y=\alpha+\beta \cdot X^{Y}$
$\operatorname{Ln} \mathrm{Y}=.01+.05 \mathrm{X}$
- Here, Y grows exponentialiy at rale β in X; that is, \mathbb{B} percent growth per period.
$\mathbf{Y}=\alpha+\beta \cdot \log \mathbf{X}$. Here, Y doubles each time X increases by the square of X .

Reciprocal Transformations

\square The relationship between variables may be inverse. Sometimes taking the reciprocal of a variable improves the fit of the regression as in the example:

- $\mathrm{Y}=\alpha+\beta \cdot(1 / \mathrm{X})$
- shapes can be:
declining slowly if beta positive rising slowly if beta negative

Polynomial Tramsformations

- Quadratic, cubic, and higher degree polynomial relationships are common in business and economics.
- Profit and revenue are cubic functions of output.
- Average cost is a quadratic function, as it is U-shaped
- Total cost is a cubic function, as it is S-shaped
- TC $=\alpha \cdot \mathrm{Q}+\beta \cdot \mathrm{Q}^{2}+\gamma \cdot \mathrm{Q}^{3}$ is a cubic total cost function.
\square If higher order polynomials improve the R -square, then the added complexity may be worth it.

