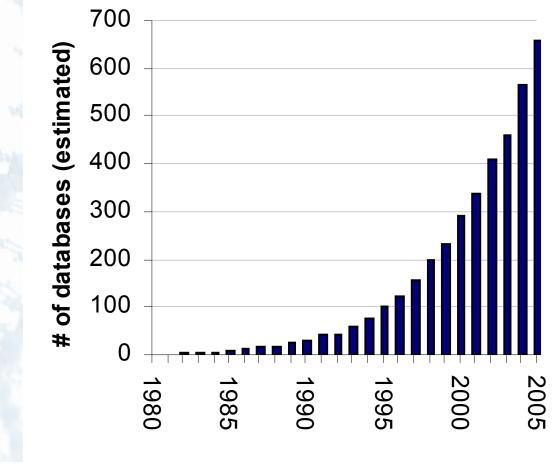

Bioinformatics application in Drug Discovery

P. Paulsharma Chakravarthy

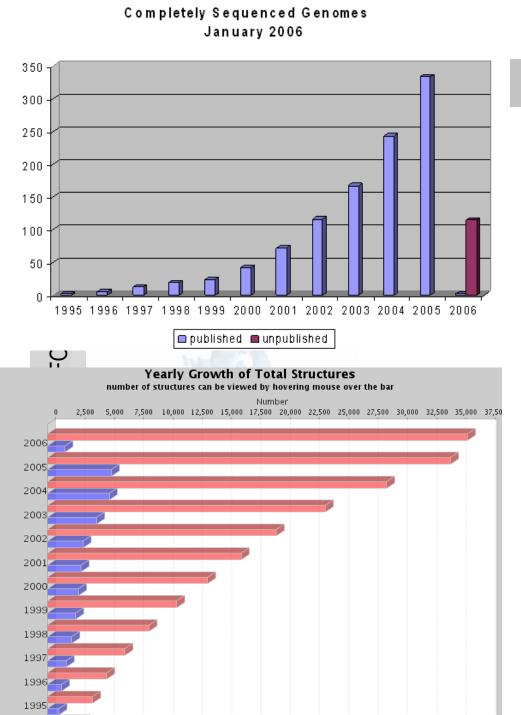
BIOINFORMATICS

The most challenging task for a scientist is to get good data

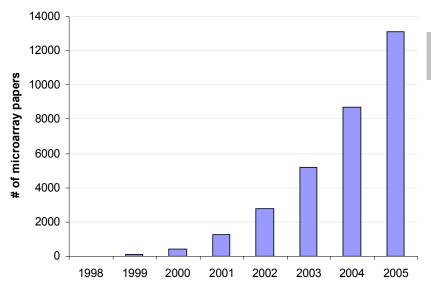

The most challenging task for a scientist is to make sense of P. Paulsharma Chakravarthy

The "new" biology

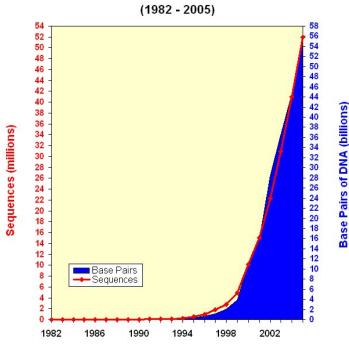
Old vs New - What's the difference?

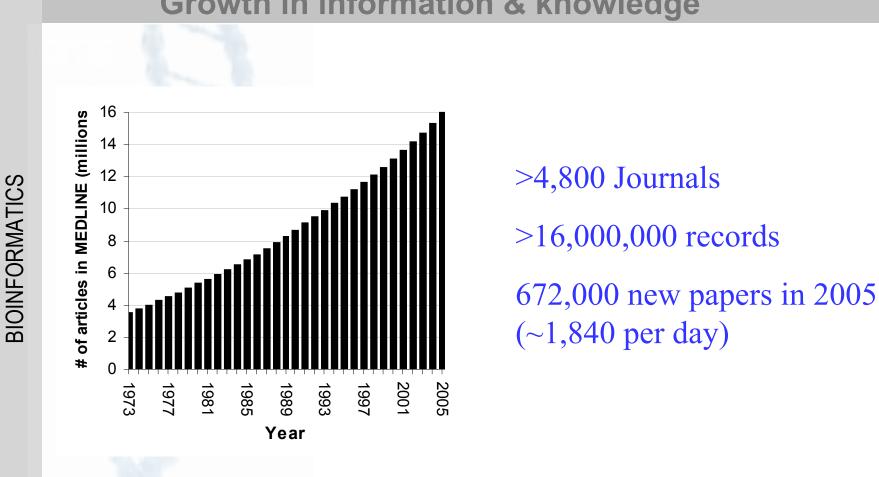

- Miniaturize less cost
- Multiplex more data
- Parallelize save time
- Automate minimize human intervention
- Thus, you must be able to deal with large amounts of data and trust the process that generated it

Data is being collected faster and in greater amounts



Year


arma Chakravarthy



Growth in microarray publications

Growth of GenBank

Growth in information & knowledge

The processes of designing a new drug using bioinformatics tools have open a new area of research. In order to design a new drug one need to follow the following path.

- 6. Identify target disease
- 7. Study Interesting Compounds
- 8. Detection the Molecular Bases for Disease
- 9. Rational Drug Design Techniques
- 10. Refinement of Compounds
- 11. Quantitative Structure Activity Relationships (QSAR)
- 12. Solubility of Molecule
- 13. Drug Testing

Identify Target Disease:-

- 1. One needs to know all about the disease and existing or traditional remedies. It is also important to look at very similar afflictions and their known treatments.
- 2. Target identification alone is not sufficient in order to achieve a successful treatment of a disease. A real drug needs to be developed.

Identify Target Disease:-

- 3. This drug must influence the target protein in such a way that it does not interfere with normal metabolism.
- 4. Bioinformatics methods have been developed to virtually screen the target for compounds that bind and inhibit the protein.

Study Interesting Compounds:

- 1. One needs to identify and study the lead compounds that have some activity against a disease.
- 2. These may be only marginally useful and may have severe side effects.
- 3. These compounds provide a starting point for refinement of the chemical structures.

Detect the Molecular Bases for Disease:-

- 3. If it is known that a drug must bind to a particular spot on a particular protein or nucleotide then a drug can be tailor made to bind at that site.
- 5. This is often modeled computationally using any of several different techniques.

Detect the Molecular Bases for Disease:-

- Traditionally, the primary way of determining what compounds would be tested computationally was provided by the researchers' understanding of molecular interactions.
- A second method is the brute force testing of large numbers of compounds from a database of available structures.

Refinement of compounds:-

- Once you got a number of lead compounds have been found, computational and laboratory techniques have been very successful in refining the molecular structures to give a greater drug activity and fewer side effects.
- Done both in the laboratory and computationally by examining the molecular structures to determine which aspects are responsible for both the drug activity and the side effects.

Computer-Aided Drug Design (CADD)

- Computer-Aided Drug Design (CADD) is a specialized discipline that uses computational methods to simulate drug-receptor interactions.
- CADD methods are heavily dependent on bioinformatics tools, applications and databases. As such, there is considerable overlap in CADD research and bioinformatics.

Virtual High-Throughput Screening (vHTS):-

- 1. Pharmaceutical companies are always searching for new leads to develop into drug compounds.
- 2. One search method is virtual high-throughput screening. In vHTS, protein targets are screened against databases of small-molecule compounds to see which molecules bind strongly to the target.

Virtual High-Throughput Screening (vHTS):-

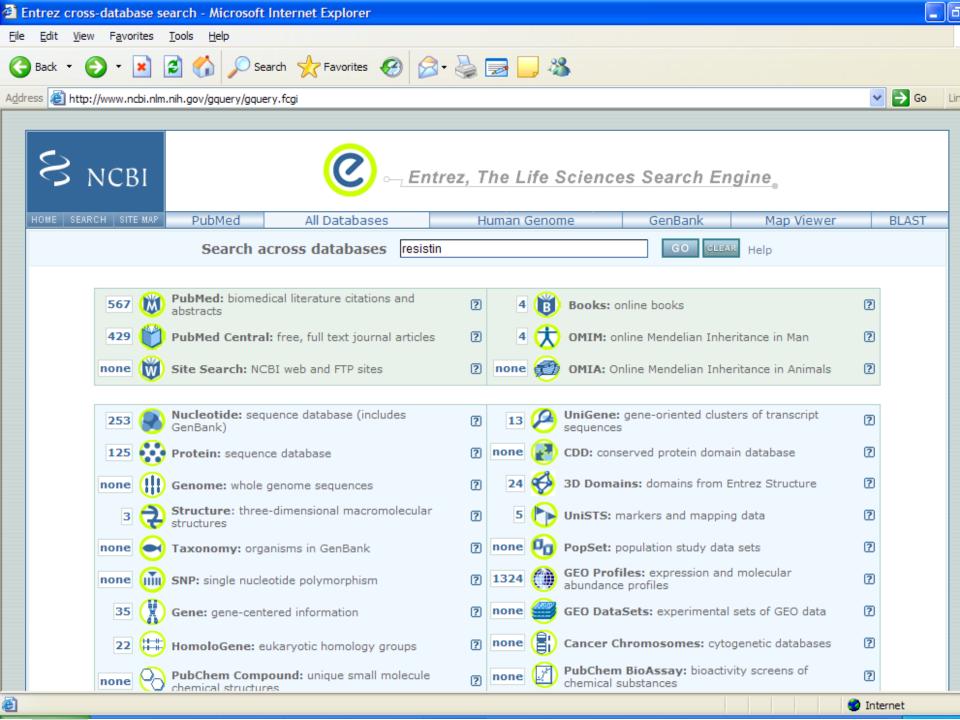
- 3. If there is a "hit" with a particular compound, it can be extracted from the database for further testing.
- 4. With today's computational resources, several million compounds can be screened in a few days on sufficiently large clustered computers.
- 5. Pursuing a handful of promising leads for further development can save researchers considerable time and expense.
 e.g. ZINC is a good example of a vHTS compound library.

Sequence Analysis:-

- 3. In CADD research, one often knows the genetic sequence of multiple organisms or the amino acid sequence of proteins from several species.
- 4. It is very useful to determine how similar or dissimilar the organisms are based on gene or protein sequences.
- 5. With this information one can infer the evolutionary relationships of the organisms, search for similar sequences in bioinformatic databases and find related species to those under investigation.
- 6. There are many bioinformatic sequence analysis tools that can be used to determine the level of sequence similarity.

Homology Modeling:-

- Another common challenge in CADD research is determining the 3-D 3. structure of proteins.
- Most drug targets are proteins, so it's important to know their 3-D structure in detail. It's estimated that the human body has 500,000 to million proteins.
- **BIOINFORMATICS** However, the 3-D structure is known for only a small fraction of these. Homology modeling is one method used to predict 3-D structure. 3.


Homology Modeling:-

- 4. In homology modeling, the amino acid sequence of a specific protein (target) is known, and the 3-D structures of proteins related to the target (templates) are known.
- 5. Bioinformatics software tools are then used to predict the 3-D structure of the target based on the known 3-D structures of the templates.
- 6. MODELLER is a well-known tool in homology modeling, and the SWISS-MODEL Repository is a database of protein structures created with homology modeling.

сы потераде - м	icrosoft internet Explorer	
<u>E</u> dit <u>V</u> iew F <u>a</u> vori	ites <u>T</u> ools <u>H</u> elp	
Back 🝷 🚱 👻 🛃 🏈 Search 🔆 Favorites 🚱 🔕 🖷 🔜 🦓		
ss 🗟 http://www.ncbi.nlm.nih.gov/		
M NCBI		titutes of Health
PubMed All Dat	tabases BLAST OMIM Books Taxi	Browser Structure
earch All Databas	ses 💙 for Go	
E MAP	What does NCBI do?	Hot Spots
source Guide	Established in 1988 as a national resource for	Assembly Archive
out NCBI introduction to BI	molecular biology information, NCBI creates public databases, conducts research in computational biology, develops software	Clusters of orthologous groups
nBank _l uence mission support	tools for analyzing genome data, and disseminates biomedical information - all for the better understanding of molecular processes affecting human health and	 Coffee Break, Genes & Disease, NCBI Handbook
software	disease. <u>More</u>	Electronic PCR
erature abases	Whole Genome Association	Entrez Home
oMed, OMIM, oks, and	The NCBI Whole Genome Association (WGA) resource provides researchers with access to genotype and associated phenotype information that will help	Entrez Tools
Med Central	elucidate the link between genes and disease. For more information, click here to see the the <u>WGA</u> resource page and click here to read the <u>press</u> <u>release.</u>	 Gene expression omnibus (GEO)
abases juences,		Human genome resources
ctures, and		
nomy	Two papers authored by researchers at NCBI are	▶ Influenza Virus Resource
nomic logy	among the top 40 most cited articles for 2005 according to ScienceWatch's "Hottest Research	Map Viewer

human

-f and art line The second desethe work-

Thanks You

Mail: bioinfopaul@gmail.com Tel: +91-9884042119