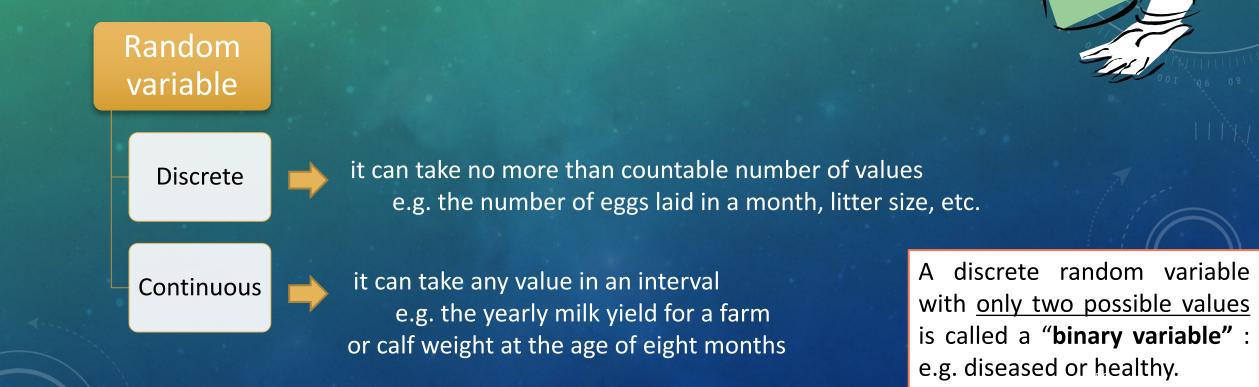
WEEK 4

PROBABILITY DISTRIBUTIONS: DISCRETE DISTRIBUTIONS

Dr. Doğukan ÖZEN

RANDOM VARIABLE

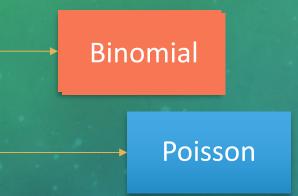
• A variable which can take different values with given probabilities.



PROBABILITY DISTRIBUTION:

It comprises all the values that the "random variable" can take, with their associated probabilities.

DISCRETE PROBABILITY DISTRIBUTIONS



- For each possible value of a discrete random variable y we assign the probability P(y).
 - The probability distribution P(y) must satisfy the following two assumptions:

1) $0 \le P(y) \le 1$ 2) $\sum_{(all y)} P(y) = 1$

Dr. Doğukan ÖZEN

BINOMIAL DISTRIBUTION

- Relevant in the situation in which we are investigating a binary response. (E.g. animal shows a clinical sign of a particular disease or not)
- Success (event occurs): 1
- Failure (event does not occur): 0

Binary response

Now assume that such single trial is repeated n times... Binomial Distribution

Ρ

n

 \succ A binomial variable y is the number of successes in those n trials. It is the sum of n binary variables. The binomial probability distribution describes the distribution of different values of the variable y {0, 1, 2, ..., n} in a total of n trials.

CHARACTERISTICS OF A BINOMIAL DISTRIBUTION:

i. The experiment consists of n equivalent trials, independent of each other

ii. There are only two possible outcomes of a single trial, denoted with Y (yes) and N (no) or equivalently 1 and 0

iii. The probability of obtaining Y is the same from trial to trial, denoted with p. The probability of N is denoted with q, so p + q = 1

iv. The random variable y is the number of successes (Y) in the total of n trials.

BINOMIAL DISTRIBUTION

The probability distribution of a random variable y is determined by the parameter p and the number of trials n:

$$P(r) = \binom{n}{r} p^r q^{n-r} \implies P(r) = \left(\frac{n!}{(n-r)! r!}\right) p^r q^{n-r}$$

n= total number of events
r= number of success (event occurs)
n-r= number of failures (event does not occur)
p= probability of success in a single trial
q= 1-p = probability of failure in a single trial

The shape of the distribution depends on the parameter p. The binomial distribution is symmetric only when p = 0.5, and asymmetric in all other cases.

AN EXAMPLE

 Let's say that we took blood samples from six cattle randomly selected from the population. We know that the prevalence of bovine tuberculosis is 25%. What is the probability of <u>none</u> is positive for tuberculosis?

$$P(r) = \left(\frac{n!}{(n-r)!\,r!}\right)p^r q^{n-r}$$

n= total number of events
r= number of success (event occurs)
n-r= number of failures (event does not occur)
p= probability of success
q= probability of failure

SOLUTION:

$$P(0) = \left(\frac{6!}{(6-0)! \, 0!}\right) 0.25^0 0.75^{6-0}$$

 $P(0) = \frac{729}{4096} = 0.1779 = 17,79\%$

POISSON DISTRIBUTION

- The random variable of a Poisson distribution represents the *count* of the number of events occurring randomly and independently in time or space at a constant rate
- It is used to calculate the probability in health sciences, especially in the cases that are rarely seen.

e.g. the number of parasitic eggs per unit volume

$$P(r) = \frac{\bar{X}^r}{r!} e^{-\bar{X}}$$

63

 \overline{X} = average number of successes in a given time r = number of success (event occurs) e = base of the natural logarithm (e = 2.71828)

EXAMPLE

Suppose that in a population of mice 3% have cancer. In a sample of 100 mice, what is the probability that more than one mouse has cancer?

$$P(y > 1) = 1 - P(y = 0) - P(y = 1)$$

 $\overline{X} = \lambda = 1\overline{00} \ (0.03) = 3$ (expectation, the mean is 3% of 100)

 $P(r) = \frac{\bar{X}^r}{r!} e^{-\bar{X}}$

 \overline{X} = average number of successes in a given time r= number of success (event occurs) e = base of the natural logarithm (e = 2.71828)

$$P(y = 0) = \frac{\overline{3}^{0}}{0!} 2.71828^{-\overline{3}} = 0.0498$$
$$P(y = 1) = \frac{\overline{3}^{1}}{1!} 2.71828^{-\overline{3}} = 0.149$$

P(y > 1) = 1 - 0.0498 - 0.149 = 0.8012

Dr. Doğukan ÖZEN

The probability that in the sample of 100 mice more than one mouse has cancer is 0.8012