POPULATION AND SAMPLE

## SAMPLE VS POPULATION

Mostly we are not able to study a whole population of individuals.

- Time, economical considerations, practical reasons etc.

Solution?


Side effect !
There will always be a uncertainty about the population with the conclusions we made.


The process of generalizing to the population from sample :
Statistical inference

## SAMPLING ERROR

- Since we are only looking at a sample (rather than the population) there is always likely to be an error in sample estimate.


## I

So, we need to establish the precision of the sample statistics as an estimate of population parameter

$$
1
$$

Standard error of the estimate

## STANDARD ERROR OF THE ESTIMATE

Sample size

$$
(S E) S_{\bar{X}}=\frac{\text { Standard deviation }}{\sqrt{n}}
$$

## WHAT ARE "STANDARD DEVIATION AND STANDARD ERROR OF MEAN" FOR ?

- Standard deviation
- Gives an indication of how close the observations are to their mean.
- Average measure of deviation of each observation in dataset from mean
- Standard Error of Mean
- Evaluates the sampling error by giving an indication of how close a sample mean is to the population mean.


## CONFIDENCE INTERVAL OF MEAN

- How good is our estimate?

Confidence interval of mean
Upper limit
Lower limit

Interpreted as the range of values within which we expect the true population mean to lie with a certain probability

If the confidence interval is wide, then the sample mean is a poor estimate of the population mean.
If the confidence interval is narrow, then the sample mean is a good estimate, i.e. it is a precise estimate of the population mean.

## CONFIDENCE INTERVAL OF MEAN

- If we have a $95 \%$ confidence interval for the mean, then we say that we are $95 \%$ certain that the interval contains the true population value within this interval.



## HOW TO CALCULATE CONFIDENCE INTERVAL?

If we know the population std. deviation

$$
\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}=\left(\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

If we don't know the population std. deviation

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}
$$

$$
\bar{x} \pm t_{0.05} \frac{s}{\sqrt{n}}=\left(\bar{x}-t_{0.05} \frac{s}{\sqrt{n}}, \bar{x}+t_{0.05} \frac{s}{\sqrt{n}}\right)
$$

