WEEK 9

COMPARING TWO MEANS: THE STUDENT T TEST

Dr. Doğukan ÖZEN

Simplest scenario: Comparing two means..

Same participants take part in each experimental condition

Within-subjects design, repeated measures

Different groups of people take part in each experimental condition

> Between group, independent design

Data Collection

Parametric test assumptions met:

Parametric test assumptions violated:

Student t test (Two-sample t test)

(Independent sample t test)

Paired sample t test

Wilcoxon testi

ASSUMPTIONS OF TWO SAMPLE T TEST

- The two samples must be *independent*
- (Ideally) Observations should be chosen by random selection
- The variable of interest should be approximately *Normally* distributed in each population from which the samples are taken.
- The variability of the observations in each group, as measured by the two variances, should be approximately equal

Parametric test assumptions

REMEMBER THE STEPS FOR HYPOTHESIS TESTS

Step 1

• Specify the null and alternative hypothesis

Step 2

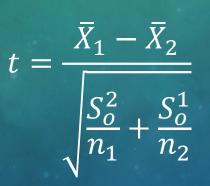
• Calculate the test statistics

Step 3

• Obtain P- value by referring the calculated value of test statistic (ignoring its sign) to the table of related distribution (which will be provided later)

Step 4

• Make a decision whether or not to reject the null hypothesis


Step 5

• Interpret the result

Calculating test statistic for two sample t test:

Equal variances

Test statistic formula =>

Unequal variances

 $\bar{z} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{S_1^2}{n} + \frac{S_2^1}{n}}}$

$$S_0^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Dr. Doğukan ÖZEN

EXAMPLE:

 Suppose that you want to investigate the effect of a new prebiotic supplement on body weight gain of broilers in your farm. You divided a total of 200 broilers into two groups: Control and Treatment. You followed your standard feeding procedure for the control group and added the prebiotic supplement for the treatment group. After 42 days, you slaughtered and weigh the chickens. Assuming that your data follows normal distribution and equal variances, does the new prebiotic supplement significantly increase growth performance of your broilers?

	Control	Treatment
n	100	100
Arithmetic Mean	2790	2840
Standard Deviation	116	130

SOLUTION

- Step 1: Establish your hypothesis
 - H0= Body weight gains for two groups are equal
 - H1= Body weight gain for two groups are unequal
- Step 2= Calculate the test statistics

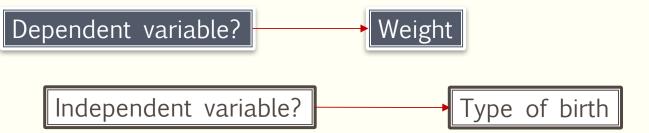
 $n_1 = 100, n_2 = 100$ $S_1 = 116, S_2 = 130$ $X_1 = 2790, X_2 = 2840$

$$S_0^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

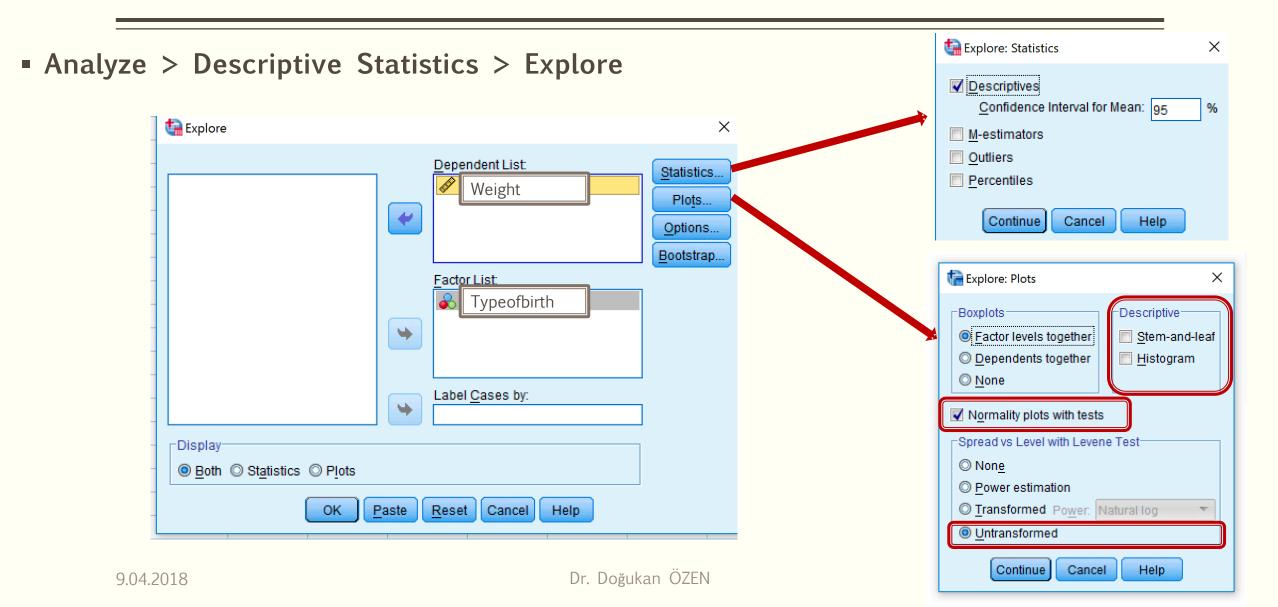
$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{S_o^2}{n_1} + \frac{S_o^1}{n_2}}} \qquad \longrightarrow \qquad t= 2,869$$

- Step 3: Obtain the P value referring the calculated test statistic
 - Refer to 2,869 with 198 degrees of freedom; P value is between= 0.01- 0.001
- Step 4: Make a decision whether or not to reject the null hypothesis
 - Considering the P value is <0.05; the null hypothesis, that there is no difference in the mean body weight gains in the two groups, is unlikely to be true. We therefore reject the null hypothesis in favour of the alternative hypothesis that there is a difference in body weight gains.
- Step 5: Interpret the results
 - The prebiotic supplement significantly improves body weight gain in broiler chickens (p<0.01).

EXAMPLE


	Typeofbirth	Weight
1	Twin Birth	30
2	Twin Birth	35
3	Twin Birth	45
4	Twin Birth	40
5	Twin Birth	50
6	Twin Birth	35
7	Twin Birth	55
8	Twin Birth	25
9	Twin Birth	30
10	Twin Birth	45
11	Twin Birth	40
12	Twin Birth	50
13	Single Birth	40
14	Single Birth	35
15	Single Birth	50
16	Single Birth	55
17	Single Birth	65

Suppose that a researcher wants to evaluate the effect of type of birth on weight gain of sheeps at the end of shearing season?


 H_0 : No difference in weight of sheeps according to type of birth

 H_A : There is a difference in weight of sheeps according to type of birth

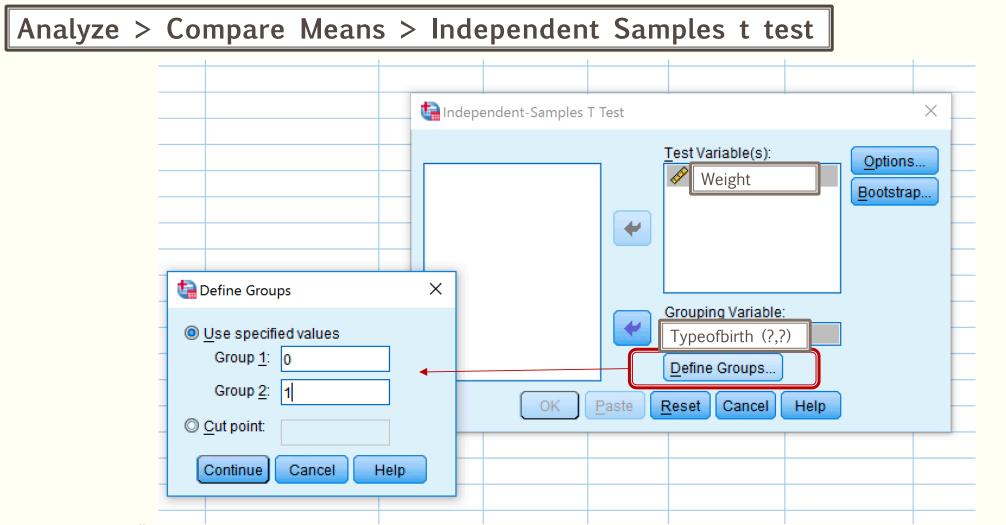
Dataset> Sheepweight.sav

Step 1: Testing the assumptions...

Testing the assumptions: a)Normality & b) Homogeneity of variances

a)Normality assumption:

 H_0 = The data follow a normal distribution H_1 = The data do not follow a normal distribution


		Tests	s of No	ormality					
		Kolmog	gorov-S	mirnov		Shapiro	-Wilk		
	Group	Statistic	df	Sig.	Statistic	df	Sig.		>0.05
	single	0,121	12	,200*	0,965	12	0,852		/0.05
Weight	twin	0,191	12	,200*	0,949	12	0,621		
								H ₀ is	accepted

b) Homogeneity of variances assumption:

 H_0 = The population variances are equal H_1 = The population variances are not equal

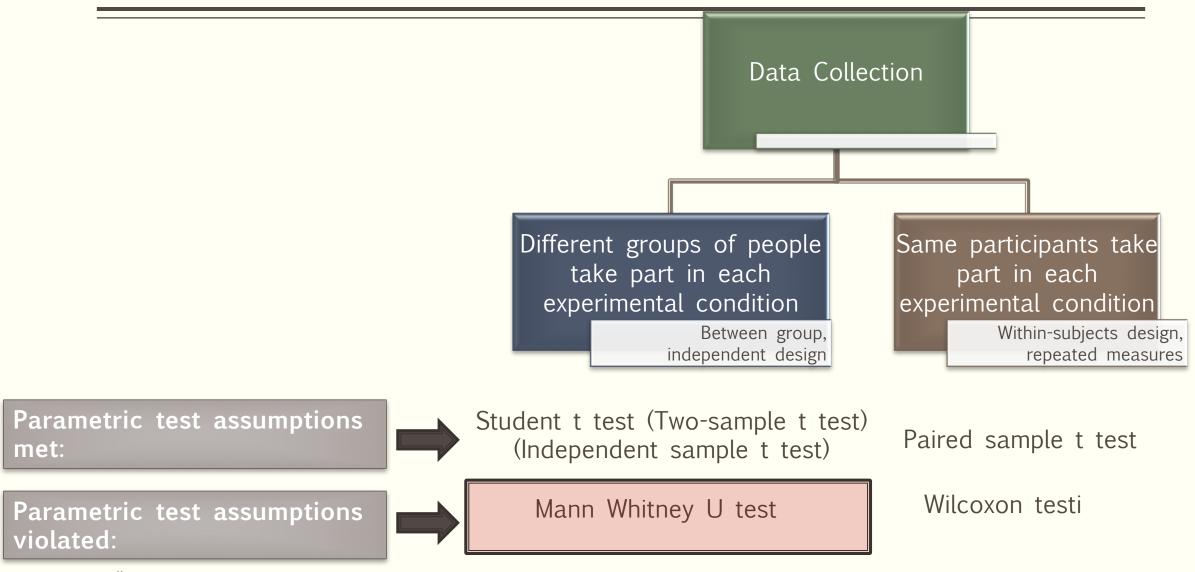
Test of Homogeneity of Variance levene Statistic df1 df2 Sig. P>0.05 Based on Mean 0.782 22 1 Based on Median 0,299 22 Weight Based on Median and with H_0 is accepted 0,59 adjusted df 0,299 20,194 Based on trimmed mean 0,792 22 0.383 121 Dr. Doğukan OZEN

Data analysis: Student t test

Results

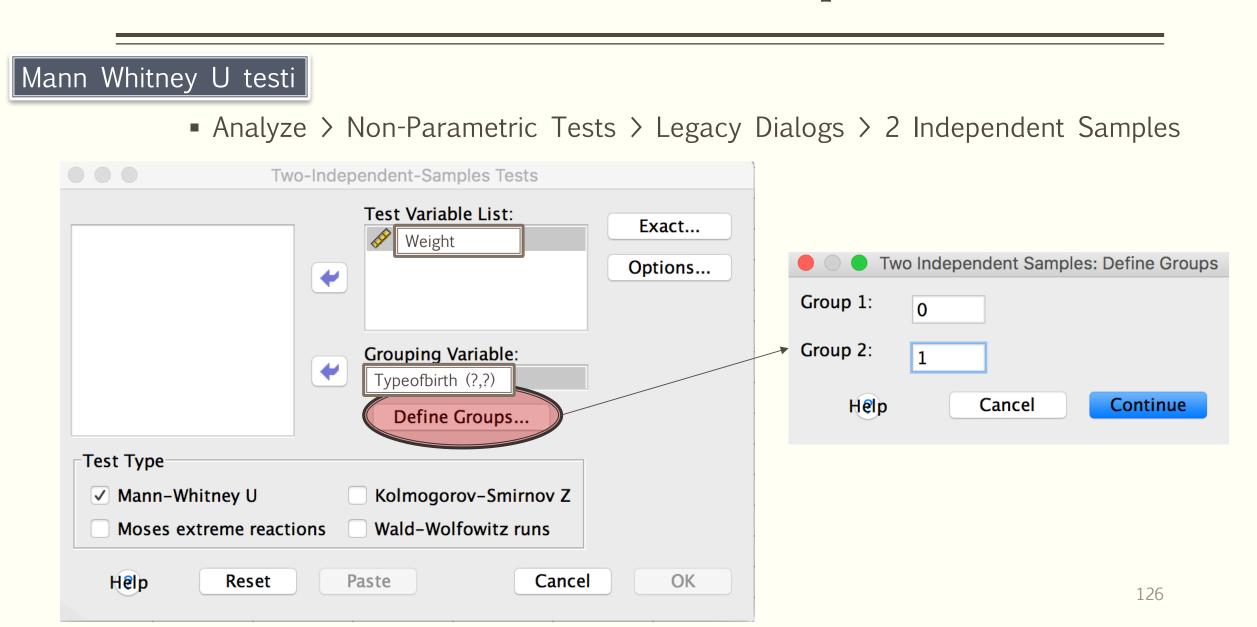
	Group	n	Mean	Std. Deviation	Std. Error Mean
\\/iht	Twin birth	12	40	9,293	2,683
Weight	Single birth	12	47	11,029	3,184

	Levene's Test for Equality of Variances			t-test	for Equa Means	lity of				
		F	Sig.	t	df	Sig. (2-tailed)		Std. Error Difference	95% Co Interval Differ	of the
									Lower	Upper
Maight	Equal variances assumed	0,782	0,386	-1,681	22	0,107	-7	4,163	-15,634	1,634
Weight	Equal variances not assumed			-1,681	21,385	0,107	-7	4,163	-15,649	1,649


Reporting the results of the analysis

HEADLINE				
Variable	Group	n	Mean ± SEM	Р
	Twin	12	40 ± 2,683	0 4 0 7
Weight	Single	12	47 ± 3,184	0,107

 H_0 : No difference in weight of sheeps according to type of birth H_A : There is a difference in weight of sheeps according to type of birth


RESULTS Although mean weight was higher in single births, this difference was not statistically significant (P>0.05). \rightarrow H₀ is accepted.

What if the parametric test assumptions are violated?

Dr. Doğukan ÖZEN

Let's use the same dataset and assume that the assumptions are violated

Test Statistics^a

	Kaygı_Düzeyi
Mann-Whitney U	46,000
Wilcoxon W	124,000
Z	-1,515
Asymp. Sig. (2– tailed)	,130
Exact Sig. [2*(1– tailed Sig.)]	,143 ^b

a. Grouping Variable: Grup

b. Not corrected for ties.

Why do you think the p value obtained from student t test is different from the one we obtain from Mann Whitney U test?

INTERPRETATION?

How should we report the results of a non parametric test?

		Weight	
Type of Birth	n	Median (Min – Max)	Р
Twin Birth	12	40 (25 - 55)	0 1 2
Single birth	12	50 (30 - 65)	0,13