WEEK 11

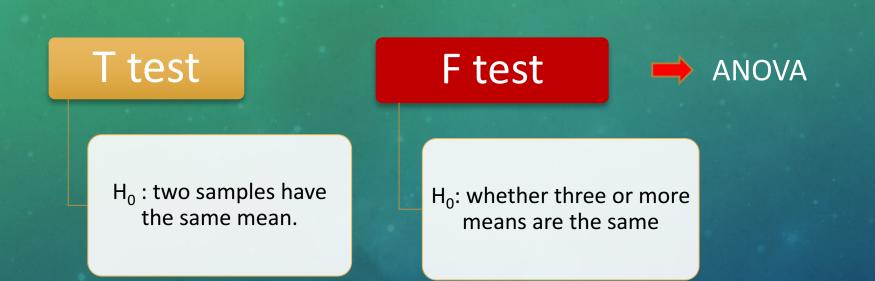
COMPARING SEVERAL MEANS: ONE WAY ANOVA

Dr. Doğukan ÖZEN

141

COMPARING SEVERAL MEANS

Suppose we have 4 groups (A, B, C, D)


A-B	B-C
A-C	B-D
A-D	C-D

Remember that with every single t test:

Can we make multiple "t tests" to compare means?

The probability of incorrectly rejecting the H₀ (Tip 1 error rate) = 5% Therefore, probability of no Type 1 error =95%

If we assume that each each test is independent then the overall probability of not doing a type 1 error is: .95 * .95 * .95 * .95 * .95 * .95 = .736 (so making a Tip 1 error rate= 1-0.736 = 0.264 => 26.4%) Dr. Doğukan ÖZEN 142

COMPARING MORE THAN 2 GROUPS...

Different groups of people take part in each <u>experimental condition</u>

Between group, independent design

Data Collection

Same participants take part in each experimental condition

Within-subjects design, repeated measures

Parametric test assumptions met:

Parametric test assumptions violated:

One way ANOVA

Kruskal Wallis test

Repated measurement ANOVA

Freidman test

ANOVA

• H0= The mean (average value of the dependent variable) is the same for all groups..

At the end of the data analysis..

What if H₀ is Rejected? (there is a difference; p<0.05). "It does not provide specific information about which groups were different!?"

We need post-hoc comparison tests

Tamhane's T2
Dunnett's T3
Games-Howe
Dunnett's C

SELECTING THE PROPER POST HOC TEST?

WQ veya Tukey testi
ferroni
riel
hberg's GT2
nes-Howell

ASSUMPTIONS OF ANOVA

- Variances in each experimental condition need to be fairly similar
- Observations should be independent

• Dependent variable should be measured at least on interval scale

TEST STATISTIC

test statistics (F test) = $\frac{\text{amount of variance explained by the model}}{\text{amount of variance not explained by the model}} = \frac{\text{effect}}{\text{error}} = \frac{MS_M}{MS_R}$

• The total amount of variation within our data is called Total sum of squares (SS_T)

$$SS_T = \sum (x_i - \bar{x}_{grand})^2$$

• How much of the total amount of variation is explained by the model \rightarrow (Model Sum of Squares - SS_M)

$$SS_M = \sum n_k (\bar{x}_k - \bar{x}_{grand})^2$$

• How much of the total amount of variation can not be explained by the model \rightarrow (Residual Sum of Squares-SS_R)

$$SS_R = \sum (x_{ik} - \bar{x}_k)^2$$

TEST STATISTIC

As, both SS_M and SS_R are summed values they will be influenced by the number of scores that were summed. To eliminate this bias we calculate average sum of squares ==> MS

$$MS_M = \frac{SS_M}{df_M}$$
 $MS_R = \frac{SS_R}{df_R}$

test statistics (F test) = $\frac{amount \ of \ variance \ explained \ by \ the \ model}{amount \ of \ variance \ not \ explained \ by \ the \ model} = \frac{effect}{error} = \frac{MS_M}{MS_R}$

	age_group	bodylength
1	2 years old	50,00
2	2 years old	45,00
3	2 years old	48,00
4	2 years old	47,00
5	2 years old	45,00
6	2 years old	49,00
7	2 years old	50,00
8	2 years old	54,00
9	2 years old	57,00
10	2 years old	55,00
11	3 years old	63,00
12	3 years old	55,00
13	3 years old	54,00
14	3 years old	49,00
15	3 years old	65,00
16	3 years old	46,00
17	3 years old	53,00
18	3 years old	67,00
19	3 years old	58,00
20	3 years old	50,00
21	4 years old	71,00
22	4 years old	67,00

Example

Suppose that a researcher wants to examine the effect of age on the body length measurements (*eg. body length*) in the awasi sheep at the end of shearing season.

Dependent variable: Body length

Independent variable: Age group

- 2 years old
- 3 years old

4 years old

Hypothesis ?

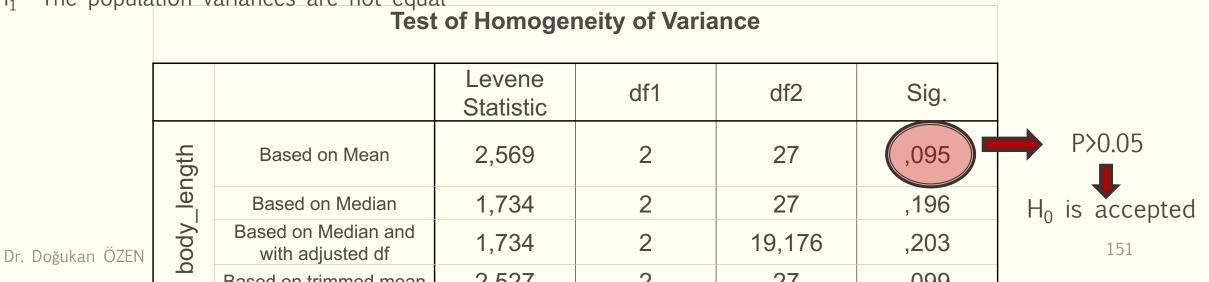
Data set > Awasi_age.sav

a)Normality assumption:

 H_0 = The data follow a normal distribution

 H_1 = The data do not follow a normal distribution

Tests of Normality


Step 1: Testing the assumptions

Age	Age_Group		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
		Statistic	df	Sig.	Statistic	df	Sig.	
	2 years old	,200	10	,200*	,929	10	,437	P>0.05
Body_L ength	3 years old	,156	10	,200*	,949	10	,652	
5	4 years old	,145	10	,200*	,956	10	,741	H_0 is accepted

b) Homogeneity of variances assumption:

 H_0 = The population variances are equal

 H_1 = The population variances are not equal

Step 2: Data analysis: One way ANOVA	Equal Variances Assumed LSD S-N-K Waller-Duncan Bonferroni Tukey Type I/Type II Error Ratio: 100 Sidak Tukey's-b Dunnett
Analyze > Compare Means > One Way ANOVA or (Analyze > General Linear Model > Univariate)	Scheffe Duncan Control Category : Last R-E-G-W F Hochberg's GT2 R-E-G-W Q Gabriel Image: Scheffe Image: Scheffe Image: Scheffe Gabriel Image: Scheffe Image: Scheffe Image: Scheffe Image: Sc
Dependent List: Contrasts Ø Body_length Post Hoc Options Dotstrap	Significance level: 0,05 Continue Cancel Help One-Way ANOVA: Options Statistics Statistics Descriptive Eixed and random effects Homogeneity of variance test Brown-Forsythe Welch
Factor: Factor: age_group Help Reset Paste Cancel OK 9.04.2010 DI. DOGUKAI ÖZEN	

ta One-Way ANOVA: Post Hoc Multiple Comparisons

Х

Descriptives

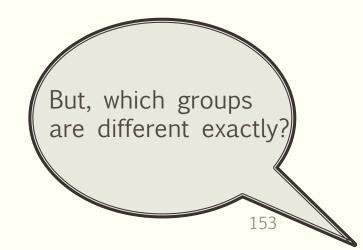
Body_length

Output				Std.		95% Confidenc Me			
F	_	Ν	Mean	Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
	2 vears old	10	50,0000	4,13656	1,30809	47,0409	52,9591	45,00	57,00
	3 years old	10	56,0000	7,10243	2,24598	50,9192	61,0808	46,00	67,00
	4 years old	10	65,4000	4,29987	1,35974	62,3241	<mark>68,4759</mark>	58,00	71,00
Test of Homogeneity of	5	30	57,1333	8,26181	1,50839	54,0483	60,2183	45,00	71,00

body_length

Levene Statistic	df1	df2	Sig.
2,569	2	27	,095

Robust Tests of Equality of Means


Body_length

	Statistic ^a	df1	df2	Sig.
Welch	32,235	2	17,336	,000
Brown–Forsythe	21,008	2	20,959	,000

a. Asymptotically F distributed.

		ANOVA			
body_length 					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1205,067	2	602,533	21,008	,000
Within Groups	774,400	27	28,681		
Total	1979,467	29			

P<0.05 => H0 is rejected => There is a statistically significant difference in body length measurements of sheeps among the age groups.

Output

	Multiple Comparisons					
Dependent Varial Tukey HSD	ble: body_length					
(1)	(J)	Mean Difference (I-				
Age_group	Age_group	J)	Std. Error	Sig.		
2 years old	3 years old	-6,00000*	2,39506	,047		
L years ora	4 years old	-15,40000*	2,39506	,000		
3 years old	2 vears old	6,00000*	2,39506	,047		
- ,	4 years old	-9,40000*	2,39506	,002		
4 years old	2 vears old	15,40000*	2,39506	,000		
. jea.o ota	3 years old	9,40000*	2,39506	,002		

*. The mean difference is significant at the 0.05 level.

Mean ± Std. Variable Ρ n Error 50 ± 1,31 ^c 2 years old Reporting the results ==10 56 ± 2,25 ^b 3 years old 10 <0,001 65,4 ± 1,36 ^a 4 years old 10

Interpretation?

Subset for alpha = 0.05

2

56,0000

1,000

3

65,4000

1,000

body_length

50,0000

1,000

Ν

a. Uses Harmonic Mean Sample Size = 10,000.

10

10

10

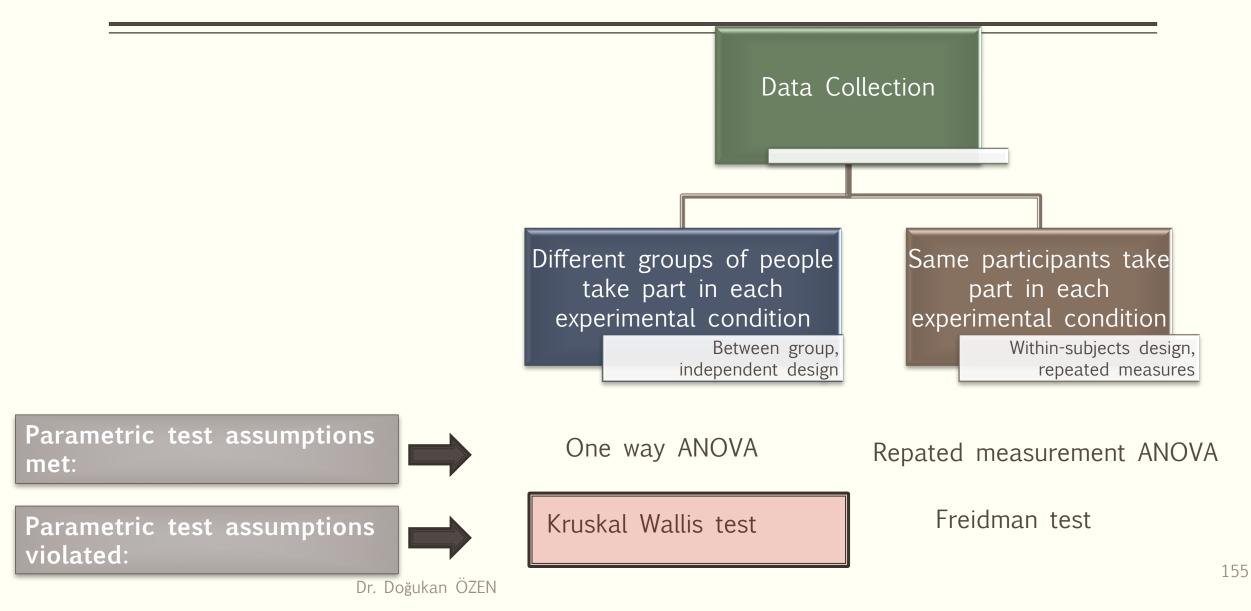
Means for groups in homogeneous subsets are displayed.

9.04.2018

^{*a*, *b*}: Different letters in the same column indicate statistical significance (p < 0.05)

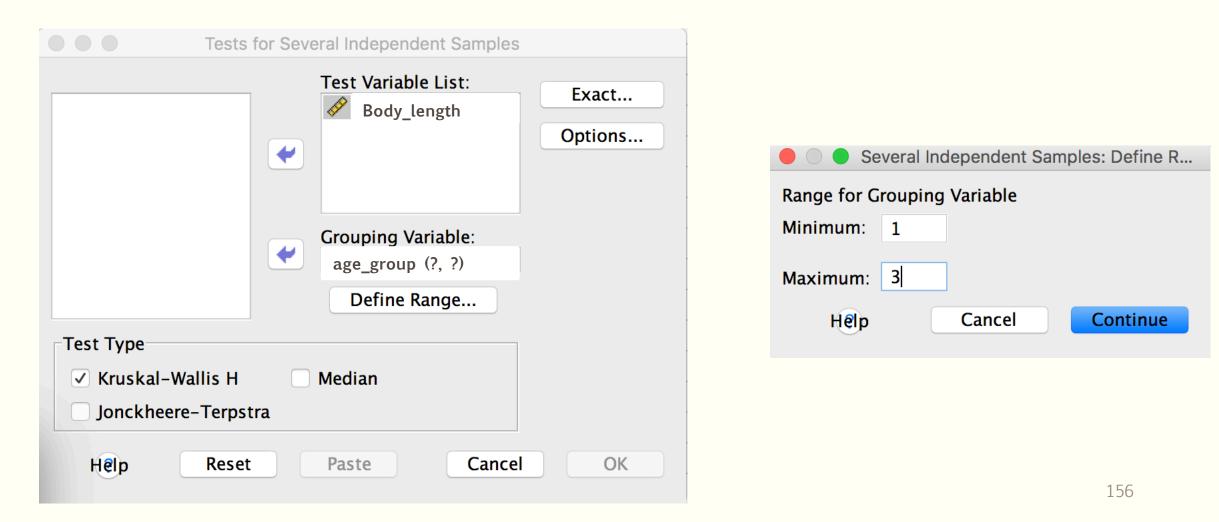
Tukey HSD^a

Age_group

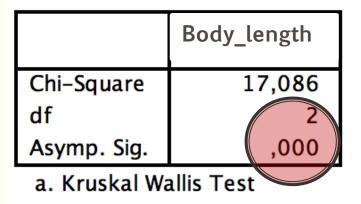

2 vears old

3 years old

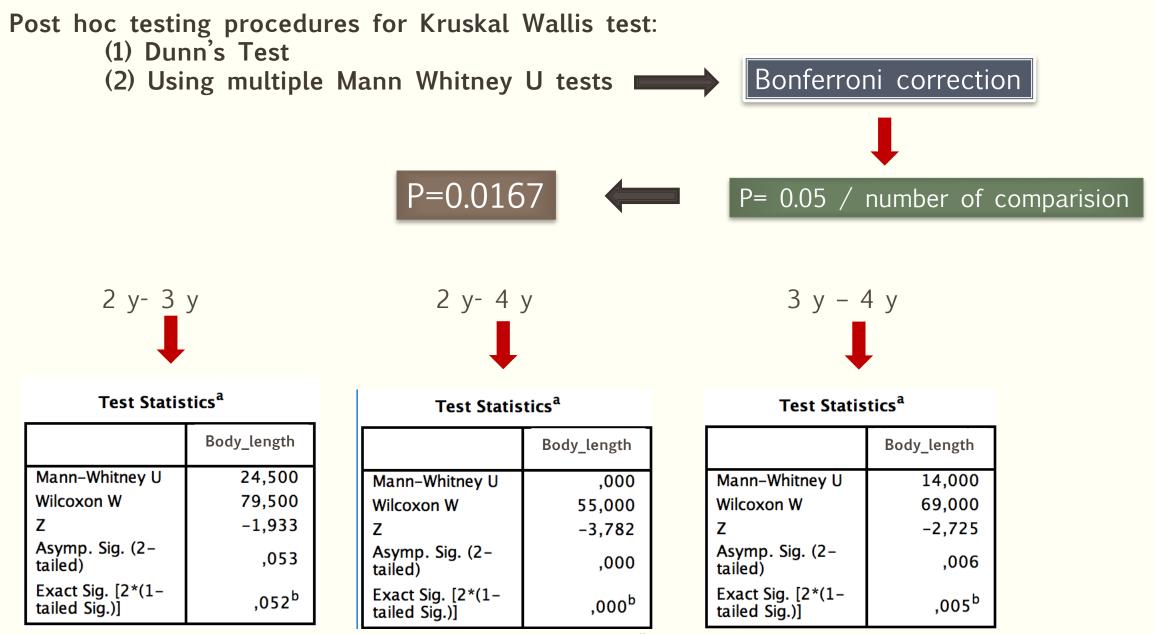
4 years old


Sig.

What if the parametric test assumptions are violated?


Let's use the same dataset and assume that the assumptions are violated

Analyze > Non-Parametric Tests > Legacy Dialogs > K Independent Samples


Ranks					
	Age_group	N	Mean Rank		
Body_length	2 years old	10	7,95		
<u> </u>	3 years old	10	14,45		
	4 years old	10	24,10		
	TOTAL	30			

Test Statistics^{a,b}

b. Grouping Variable: Keratoplasti_Yöntemi

But, which groups are different from each other?

9.04.2018