WEEK 12

COMPARING PROPORTIONS: THE CHI-SQUARED TEST

Dr. Doğukan ÖZEN

159

CHI SQUARE TEST

- Aim is to test hypothesis for proportion, a parameter that summarizes the observations of binary variable
 - Binary variable: categorical variable with only two categories of response (Success vs failure).
- It is performed to assess whether two categorical variables are related to each other
- Test is based on the Chi- squared distribution

ANALYZING TWO CATEGORICAL VARIABLES

- Calculating the mean of a categorical variable >>> meaningless...
- We analyze frequencies...

An avample of 2*2 Contingancy table

Analyze the number of things that fall into each combination of categories.

🖌 Cell

	Cured	Not Cured	TOTAL
Medicine x	28	48	76
Medicine y	24	38	62
TOTAL	52	86	138

- 2 x 2 Contingency table
- Table has 4 cells

Dr. Doğukan ÖZEN

LARGER CONTINGENCY TABLES (2XM, NX2, NXM TABLOLAR)

2x3

	Success					
Diet	Good Medium Bad					
А	60	30	10			
В	30	30	40			

4x3

	Health Status				
Treatment Method	Good Medium Bad				
A	50	30	20		
В	10	30	60		
С	25	25	50		
D	90	5	5		

Dr. Doğukan ÖZEN

162

THE LOGIC OF CHI-SQUARE TEST

 To determine whether observed frequencies are significantly different from expected frequencies

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

O = Observed E = Expected

Dr. Doğukan ÖZEN

ASSUMPTIONS OF CHI SQUARE TEST

- Independence of the data
 - Each subject or animal in contributes to only one cell of the contingency table.
 - Note that you can't use it on a repeated measures design)
- The expected frequencies should be greater than 5
 - However, it is acceptable in larger contingency tables to have up to 20% of expected frequencies below 5
 - 1. Increase the number of subjects,
 - 2. Merge rows or columns,
 - 3. Use chi square with Continuity Correction (Yates correction).
 - 4. Use Fisher's exact test (For only 2 x 2 tables)
- No expected frequencies should be below 1.

EXAMPLE

Suppose that you designed a study to evaluate the effect of a new therapy in dogs with canine parvovirus. For this purpose you treated 200 dogs with two available treatment. Results are as follows:

	Sur		
Treatment	Survived	Non Survived	Total
New	20	80	100
Available	5	95	100
Total	25	175	200

 $\ensuremath{\cdot} H_0$: There is no association between the survival and treatment type

•H₁: There is a association between the survival and treatment type

SOLUTION

STEP 1: Calculate the expected frequencies.

Expected Fre (25/200)*100	Expected Frequency: (25/200)*100 = 12,5		Frequency : *100 = 87,5			
	Survival					
Treatment	Survived	Non Survived	Total			
New	20	80 📕	100			
Available	5	95	100			
Total	25	175	200			
Expected Free	luency:	Expected Frequency:				
(25/200)*100 =	= 12,5	(175/200)*100 = 87,5				

STEP 2: Calculate the chi square value using the formula.

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

$$\chi^{2} = \frac{(20 - 12.5)^{2}}{12.5} + \frac{(80 - 87.5)^{2}}{87.5} + \frac{(5 - 12.5)^{2}}{12.5} + \frac{(95 - 87.5)^{2}}{87.5}$$

= 10,286

STEP 3: Compare the computed chi square value with the theoretical table values.

Table chi square value with 1 df = 3,841 Calculated test statistics = 10.286 so calculated test statistics is bigger than theoretical table value

STEP 4: Make a decision whether or not reject the null hypothesis. *HO is rejected. =>* There is a association between the survival and treatment type

Example

	Method	Status	
1	tratment A	Not cured	
2	tratment A	Not cured	
3	tratment A	Not cured	
4	treatment B	Not cured	
5	tratment A	Not cured	
6	tratment A	Not cured	
7	tratment A	Not cured	
8	treatment B	Not cured	
9	tratment A	Not cured	
10	treatment B	Not cured	
11	treatment B	Not cured	
12	tratment A	Not cured	
13	treatment B	Not cured	
14	tratment A	Not cured	
15	treatment B	Not cured	
10	tratmont A	Not ourod	

- A researcher wants to compare the efficancy of two different methods (treatment A vs treatment B) used in the treatment of hip anomalies. After the follow up, he records the results as cured or not cured.
- •H₀: There is no association between the treatment method and status of the patient
- •H₁: There is an association between the treatment method and status of the patient

Dataset > Hiptreatment.sav

9.04.2018

Analyze > Descriptive Statistics > Crosstabs

Crosstabs	
Row(s):	Exact Statistics
Column(s):	Cells Format
Layer 1 of 1	Style Bootstrap
Previous Next	
Usplay layer variables in table layers	
ess tables	
Reset Paste Cance	I OK

Me	thod *	Sta	atus	Crosstabulation	1

			status				
			cured	not cured	Total	H_0 :	= Tł
Method	Treatment A	Count Expected Count % within MakulaÖdemitini	15 24,0 14,7%	87 78,0 85,3%	102 102,0 100,0%	treat or no	ment ot cu
		% within GörmeDurumu	31,9%	56,9%	51,0%		<u>)</u> 5 –)
	Treatment B	Count Expected Count % within MakulaÖdemitipi	32 23,0 32,7%	66 75,0 67,3%	98 98,0 100,0%	signi	ficant nods
		% within GörmeDurumu	68,1%	43,1%	49,0%	Succ	cess i
Total		Count Expected Count	47 47,0	153 153,0	200		
		% within MakulaÖdemitipi	23,5%	76,5%			
		% within GörmeDurumu	100,0%	100,0%			Value
					Pearson (Square	Chi-	8,95
					Continuity Correction	n ^b	7,98
If an	y expect	ed count is	less than	5 in	Likelihood Fisher's E Test	l Ratio xact	9,10
2*2 tables (or more than 20% of the cells in m*n tables), than Fischer exact					Linear-by Associatio	/-Linear on	8,91
test	should	be used	insteac	of	N of Valic	Cases	2(
Pearson Chi square value.					a. 0 cells	(0,0%) ha	ve expe

OUTPUT

 H_0 = There is no association between the treatment method (A & B) and the status (cured or not cured) of the patient

P<0.05 => H0 rejected => «There is a statistically significant association between two treatment methods and the status of the patient (p<0.05). Success is higher in patients treated with method B

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2–sided)	Exact Sig. (1–sided)
earson Chi- quare	8,955 ^a	1	,003		
Continuity Correction ^b	7,984	1	,005		
ikelihood Ratio fisher's Exact fest	9,102	1	,003	,004	,002
inear-by-Linear Association	8,910	1	,003		
l of Valid Cases	200				
a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 23,03.					
b. Computed only for a 2x2 table					

An alternative way for data entry

Method	status	Frequency
Treatment A	cured	15,00
Treatment A	not cured	87,00
Treatment B	cured	32,00
Treatment B	not cured	66,00

Data > Weight Cases

