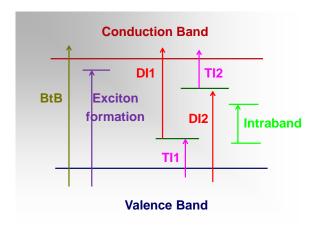
Types of OSL


- Continuous Wave OSL (CW-OSL): the stimulation intensity is kept constant throughout the duration of the experiment, with simultaneous monitoring of the signal.
- 2. Linearly Modulated OSL (LM-OSL): the stimulation intensity is linearly increased with time, with simultaneous monitoring of the signal.
- 3. Non-linearly Modulated OSL (NLM-OSL): the stimulation intensity is non-linearly increased (parabolically, hyperbolically, etc) with time, with simultaneous monitoring of the signal.
- Pulsed OSL (P-OSL): the sample is exposed to stimulation pulses, while monitoring of the signal takes place when stimulation mode is off (NO FILTERS REQUIRED).

Lambert Beer Law

$$I(\lambda, x) = I_0(\lambda) exp\{-\alpha(\lambda)x\}$$

 $\alpha(\lambda)$ = absorption coefficient $l(\lambda, x)$ = intensity at position x $l_o(\lambda)$ = incident intensity

Excitation = ionizing radiation Stimulation = electromagnetic radiation

Dependences

$$\alpha (hf) = n(E_0) \sigma(hf, E_0)$$

 $\alpha(hf)$ = absorption coefficient $n(E_0)$ = concentration of traps/defects $\sigma(hf, E_0)$ = photo-ionization cross section

2

$$\sigma(hf, E_0) \sim \frac{(hf - E_0)^{\frac{3}{2}}}{(hf)^5}$$

1

Caution

E₀ = optical ionization threshold energy in OSL

≠

E = activation energy, trap depth in TL

The theory of OSL is not related to the corresponding TL theory = the trap depth/activation energy is not considered in the photo-ionization theory.

Simultaneous thermal and optical stimulation

$$p_{total} = p_{thermal} + p_{optical} = s \cdot \exp\left(-\frac{E_o}{k \cdot T}\right) + \sigma(E_o) \cdot \varphi$$

1. Case of CW-OSL

$$L(t) = n_0 \cdot \left(s \cdot \exp\left(-\frac{E}{k \cdot T}\right) + \sigma \cdot \varphi \right) \cdot \exp\left(-s \cdot t \cdot \exp\left(-\frac{E}{k \cdot T}\right)\right) \cdot \exp\left(-\sigma \cdot \varphi \cdot t\right)$$

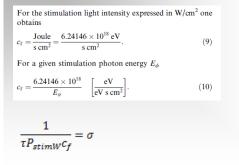
2. Case of LM-OSL

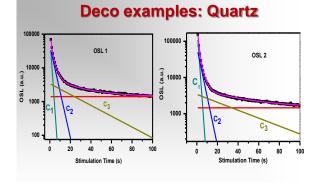
$$L = L_m \cdot \left(1 - \sqrt{\sigma \cdot q} \left(t_m - t\right)\right) \cdot \exp\left[\sqrt{\sigma \cdot q} \left(t_m - t\right) + \sigma \cdot q \cdot t_m \cdot t - \frac{\sigma \cdot q}{2} \cdot \left(t_m^2 + t^2\right)\right]$$

σ estimation: fitting of CW-OSL 1

$$I(t) = I_0 \left[1 + (b-1) \frac{t}{\tau}\right]^{-\frac{b}{b-1}}$$

Fitting parameters


- 1. b = kinetic order (ranging between 1 and 2)
- 2. T = decay lifetime of the OSL component
- 3. $I_0 = maximum$ intensity of the OSL component

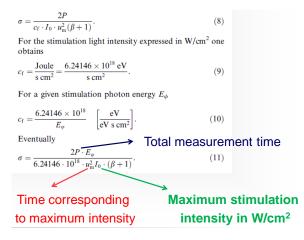

Independent variable: time t (s)

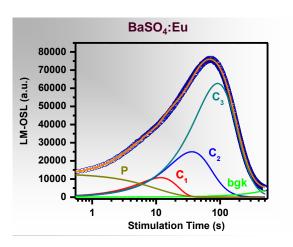
$$\tau = (\sigma \cdot \varphi)^{-1}$$

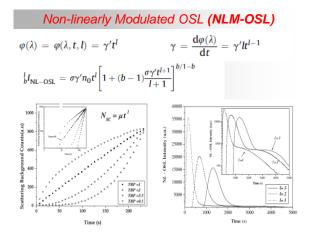
 ϕ = instrumental parameter expressed in units of W/cm² \rightarrow should be converted in units of photons per cm²

σ estimation: fitting of CW-OSL 2

σ estimation: fitting of LM-OSL


$$I(u) = \frac{I_{\mathrm{m}}}{u_{\mathrm{m}}} \cdot u \cdot \left(\frac{\beta - 1}{2 \cdot \beta} \cdot \frac{u^2}{u_{\mathrm{m}}^2} + \frac{\beta + 1}{2 \cdot \beta}\right)^{\frac{\beta}{1 - j}}$$


Fitting parameters


- 1. u_m = stimulation time where the signal gets its maximum value
- 2. β = kinetic order (ranging between 1 and 2)

3. $I_m = maximum$ intensity of the peak

Independent variable: Stimulation time u (s)

Deconvolution results concerning the t _{max} values of all LM-OSL components for both types of irradiation.	

Table 2

Component t _{max} σ	β, RT	a, RT	β,125 °C	α,125 °C
C1	6.8 ± 0.3 (s)	$7.5 \pm 0.4(s)$	12.4 ± 0.5 (s)	12.4 ± 0.7 (s)
	9.1×10 ⁻¹⁵ (cm ²)	1.2×10 ⁻¹⁶ (cm ²)	3.1×10 ⁻¹⁶ (cm ²)	3.1×10 ⁻¹⁶ (cm ²)
C2	25.6 ± 0.4 (s)	30.3 ± 0.5 (s)	32.3 ± 0.6 (s)	35.3 ± 0.8 (s)
	9.3×10 ⁻¹⁶ (cm ²)	2.3×10 ⁻¹⁷ (cm ²)	1.3×10 ⁻¹⁷ (cm ²)	1.1×10 ⁻¹⁷ (cm ²)
C3	98.3 ± 0.3 (s)	86.7 ± 0.6 (s)	$92.9 \pm 0.8(s)$	88.9 ± 1 (s)
	4.7×10 ⁻¹⁸ (cm ²)	7.3×10 ⁻¹⁸ (cm ²)	3.4×10 ⁻¹⁸ (cm ²)	7.1×10 ⁻¹⁸ (cm ²)
C ₄	173.1 ± 5 (s)	176.4 ± 6 (s)	143.8 ± 5.5 (s)	138.8 ± 6 (s)
	1.9×10 ⁻¹⁹ (cm ²)	2.1×10 ⁻¹⁹ (cm ²)	7.2×10 ⁻¹⁹ (cm ²)	8.1×10 ⁻¹⁹ (cm ²)
C5	497.8 ± 23 (s)	524.8 ± 24 (s)	323.7 ± 24.3 (s)	293.7 ± 26 (s)
	2.7×10 ⁻²⁰ (cm ²)	2.5×10 ⁻²⁰ (cm ²)	6.8×10 ⁻²⁰ (cm ²)	7.7×10 ⁻²⁰ (cm ²)
C ₆	1842.5 ± 75 (s)	1659.8 ± 69 (s)	1233.6 ± 61 (s)	942,5 ± 57(s)
	2.2×10 ⁻²² (cm ²)	1.3×10 ⁻²² (cm ²)	4.7×10 ⁻²² (cm ²)	23×10 ⁻²¹ (cm ²)

The cross-section, σ , values reported in literature vary by over four orders of magnitudes, ranging from $\sim 10^{-17}$ for the "fast" components up to the $\sim 10^{-21}$ cm² for the "slow" components.

Components	s Samples			
	alt	atk	pdk	sle
C ₁	3.3×10^{-15}	$3.1 imes 10^{-15}$	2.8×10^{-15}	1.1×10^{-15}
C ₂	1.5×10^{-16}	8.0×10^{-17}	1.1×10^{-16}	1.0×10^{-16}
C3	7.2×10^{-18}	$6.6 imes 10^{-18}$	9.3×10^{-18}	6.6×10^{-18}
C_4	4.8×10^{-19}	4.7×10^{-19}	4.2×10^{-19}	5.1×10^{-19}
C5	3.4×10^{-20}	2.9×10^{-20}	3.1×10^{-20}	2.9×10^{-20}
C_6	$5.5 imes 10^{-22}$	$5.9 imes 10^{-22}$	$5.9 imes 10^{-22}$	6.6×10^{-22}
Table 1 OSL characteristics of CaF ₂ :N				
Peak number	<i>u</i> _m (s)	β	$\sigma (10^{-18} c$	em ²)
1	13.5576	7 1.56	24.99149	
2	80.6598	3 2	0.60312	
3	195.1535	2	0.10304	
4	649.2962	9 1.75	0.01015	

Values of cross-section for each component in cm²

Excitation and Luminescence Photon Energies Used in OSL Dating				
Mineral	Energy (wavelength) of excitation photons	Energy (wavelength) of luminescence photons		
Quartz	2.2 - 2.4 or 2.7 eV	3.35 eV		
(SiO ₂)	(510 – 560 or 470 nm) green-blue	(370 nm) ultraviolet		
Potassium	1.4 eV	3.1 eV		
Feldspar	(880 nm)	(400 nm)		
KAISi ₃ O ₈	infrared	Violet		

Appropriate detection filters required

4

Excitation and Luminescence Photon Energies Used in OSL Dosimetry

Dosimeter	Energy (wavelength) of excitation photons	Energy (wavelength) of luminescence photons
Quartz	2.2 - 2.4 or 2.7 eV	3.35 eV
(SiO ₂)	(510 – 560 or 470	(370 nm)
Al ₂ O ₃ :C, BeO,	nm)	ultraviolet
CaF ₂ :N, CaF ₂ :Dy	green-blue	
MgO, BaSO ₄ :Eu, KBr:Eu		

Appropriate detection filters required