Two different groups of info

- ➤ Quantitative information: Intensity of luminescence signal, signal integrals, sensitization (quantifying TL)
- ➤ Qualitative information = Characteristics of the TL peak for understanding the mechanism as well as for assessing the lifetime of each trap Activation energy, frequency factor, order of kinetics → towards estimating the life time of each trap

Activation energy: definition

Activation energy (definition and properties)

It is the energy, E, expressed in eV, assigned to a metastable state or level within the forbidden band gap between the conduction band (CB) and the valence band (VB) of a crystal. This energy is also called trap depth. The metastable level can be an electron trap, near to the CB, or a hole trap, near the VB, or a luminescence centre, more or less in the middle of the band gap. The metastable levels are originated from defects of the crystal structure. A crystal can contain several kinds of traps and luminescence centers. If E is such that E > several kT, where k is the Boltzmann's constant, then the trapped charge can remain in the trap for a long period. For an electron trap, E is measured, in eV, from the trap level to the bottom of the CB. For a hole trap, it is measured from the trap to the top of the VB.

Handbook of thermoluminescence, C. Furetta

Frequency Factor: definition

The frequency factor, s, is known as the attempt-to-escape frequency and is interpreted as the number of times per second, v, that an electron interacts with the crystal lattice of a solid, multiplied by a transition probability κ , multiplied by a term which accounts for the change in entropy ΔS associated with the transition from a trap to the delocalized band. s may be written as

$$s = v \cdot \kappa \cdot \exp\left(\frac{\Delta S}{k}\right)$$

where k is the Boltzmann constant [1,2].

The expected maximum value of s should be similar to the lattice vibrational frequency (Debye frequency), i.e. $10^{12} - 10^{14}$ s⁻¹. According to Chen, the possible range for s is from 10^5 to 10^{13} s⁻¹ [3].

Handbook of thermoluminescence, C. Furetta

Methods for determining E

More in detail, it is possible to group these methods in main sections:

- a) Methods based upon maximum temperatures,
- b) Methods based upon low temperatures side analysis,
- c) Variable heating rates methods,
- d) Area measurements methods,
- e) Isothermal decay method,
- f) Inflection points method,
- g) Peak shape geometrical methods.
- a)The simplest procedure is that searching for a linear relationship between glow temperature and activation energy. → First order of kinetics → Requires knowledge of s.
- b)E value independent on s. Thermal quenching and temperature lag could result in underestimation \rightarrow Low β
- c)E value not affected by thermal quenching but s value is some affected \rightarrow Low β is suggested

5 different methods for E

- ➤ De-convolution (both quantitative and qualitative info)
- ➤ Initial rise technique
- >Fractional glow technique
- ➤ Various heating rates method (Check for thermal quenching first)
- > Isothermal decay

$$\tau = s^{-1} \exp\left(\frac{E}{kT}\right)$$

Fractional glow

Temperature (°C)

Initial part: Boltzmann factor →Initial Rise Technique

$$I \propto T^{\alpha} \exp\left(-\frac{E}{kT}\right)$$

$$\ln I = \alpha \ln T - \frac{E}{kT}$$

Arrhenius plot

170 15000 12000 9000 6000 3000 0 80 100 120 140 160 180 60 T (°C) 10-Equation y = a +9 Adj. R-Sq 0.9992 8 Value Standard 0.14951 Ε Interce 45.80 Ε Slope -1.374 0.00537 6 5 4 3 2 26 28 30 32 38 40 42 44 34 36 1/kT

Initial part: Boltzmann factor →Initial Rise Technique

$$I \propto T^{\alpha} \exp\left(-\frac{E}{kT}\right)$$

$$\ln I = \alpha \ln T - \frac{E}{kT}$$

Arrhenius plot Intercept~In(s)

Arrhenius equation

The Arrhenius equation gives the mean time, τ , that an electron spends in a trap at a given temperature T. It is

$$\tau = s^{-1} \exp\left(\frac{E}{kT}\right) \tag{1}$$

where s is the frequency factor (in the case of thermoluminescence the frequency factor is also called attempt-to-escape frequency), E is the energy difference between the bottom of the CB and the trap position in the band gap, also called trap depth or activation energy, k is the Boltzmann's constant.

Equation (1) can be rewritten as

$$p = \tau^{-1} \tag{2}$$

which gives the probability p, per unit of time, of the release of an electron from the trap.

$$s = \frac{\beta \cdot E}{k \cdot T_M^2} \exp\left(\frac{E}{kT_M}\right)$$

 $[sec^{-1}]$

First order

$$s = \frac{\beta E \exp\left(\frac{E}{kT_M}\right)}{kT_M^2} \left[1 + \frac{2kT_M}{E}\right]^{-1}$$

Second order

$$s = \left[\frac{kT_M^2 \exp\left(-\frac{E}{kT_M}\right)}{\beta E} \left(1 + \frac{2kT_M(b-1)}{E}\right)\right]^{-1}$$
 General order

1A: Natural TL (NTL) glow curve signal of obsidian

Fig. 1B: Initial rise (I.r.) plot for the NTL signal of obsidian. For both figures, the heating rate applied was 1 °C/s.

Initial part: Boltzmann factor →Initial Rise Technique

$$I \propto T^{\alpha} \exp\left(-\frac{E}{kT}\right)$$

$$\ln I = \alpha \ln T - \frac{E}{kT}$$

T in units of Kelvin

Isothermal decay

$$I(t) = I_0 \exp(-tp),$$

First order

Measurements in various Temperatures

$$\ln(\frac{S_{t_1}}{S_0}) = -pt_1$$

$$m_i = -s \exp(-\frac{E}{kT_i})$$

$$\ln(m_i) = \ln(-s) - \frac{E}{kT_i}$$