EQUIVALENCE CALCULATIONS INVOLVING MULTIPLE INTEREST

- All compounding of interest takes place once per time period (e.g., a year), and to this point cash flows also occur once per time period.
- Consider an example where a series of cash outiliows occur over a number of years.
- Consider that the value of the outflows is unique for each of a number (i.e., first three) years.
- Consider that the value of outifiows is the same for the last four years.
- Find a) the present equivalent expenditure; b) the future equivalent expenditure; and c) the annual equivalent expenditure

PRESENT EQUIVALENT EXPENDITURE

- Use $P_{0}=F(P / F, i \%, N)$ for each of the unique years:
-- F is a series of unique outflow for year 1 through year 3;
-- i is common for each calculation;
-- N is the year in which the outilow occurred;
-- Multiply the outflow times the associated table value;
-- Add the three products together;
- Use A ($\mathrm{P} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N}-j)(\mathrm{P} / \mathrm{F}, \mathrm{i} \%, j)$-- deferred annuity -- for the remaining (common outflow) years:
- - A is common for years 4 through 7;
-- i remains the same;
-- N is the final year;
$--j$ is the last year a unique outflow occurred;
-- multiply the common outflow value times table values;
-- add this to the previous total for the present equivalent expenditure.

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO FUTURE EQUIVALENTS

- Find F when given G :

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO FUTURE EQUIVALENTS

- Find F when given G :
- Find the future equivalent value when given the uniform gradient amount

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO FUTURE EQUIVALENTS

- Find F when given G :
- Find the future equivalent value when given the uniform gradient amount
$\cdot F=G\left[\frac{(1+i)^{N-1}-1}{i}+\frac{(1+i)^{N-2}-1}{i}+\ldots+\frac{(1+i)^{1}-1}{i}\right]$

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO FUTURE EQUIVALENTS

- Find F when given G :
- Find the future equivalent value when given the uniform gradient amount

$$
\cdot F=G \stackrel{(1+i)^{N-1}-1}{i}+\frac{(1+i)^{N-2}-1}{i}+\ldots+\underline{(1+i)^{1}-1}
$$

- Functionally represented as (G/i) (F/A, $1 \%, \mathrm{~N})$) ($\mathrm{NG} / \mathrm{i})$

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO FUTURE EQUIVALENTS

- Find F when given G :
- Find the future equivalent value when given the uniform gradient amount

$$
\cdot F=G \stackrel{(1+i)^{N-1}-1}{.}+\frac{(1+i)^{N-2}-1}{}+\ldots+\frac{(1+i)^{1}-1}{}
$$

- Functionally represented as (G/i) (F/A; $1 \%, \mathrm{~N})$) ($\mathrm{NG} / \mathrm{i})$
- Usually more practical to deal with annual and present equivalents, rather than future equivalent values

Cash Flow Diagram for a Uniform Gradient Increasing by G Dollars per period
i = effective interest rate per period

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find A when given G:

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find A when given G:
- Find the annual equivalent value when given the uniform gradient amount

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find A when given G:
- Find the annual equivalent value when given the uniform gradient amount

$$
\text { - } A=G\left[\begin{array}{l}
1 \\
i
\end{array}=\frac{N}{(1+i)^{N}-1}\right]
$$

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find A when given G:
- Find the annual equivalent value when given the uniform gradient amount
- $A=G\left[\begin{array}{l}1 \\ - \\ i\end{array} \frac{N}{(1+i)^{N}-1}\right]$
- Functionally represented as $\mathrm{A}=\mathrm{G}(\mathrm{A} / \mathrm{G}, \mathrm{i} \%, \mathrm{~N})$

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find A when given G :
- Find the annual equivalent value when given the uniform gradient amount
- $A=G\left[\begin{array}{l}1 \\ - \\ i\end{array} \frac{N}{(1+i)^{N}-1}\right]$
- Functionally represented as $\mathrm{A}=\mathrm{G}(\mathrm{A} / \mathrm{G}, \mathrm{i} \%, \mathrm{~N})$
- The value shown in [] is the gradient to uniform series conversion factor and is presented in column 9 of Appendix C (represented in the above parenthetical expression).

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given G:

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given G:
- Find the present equivalent value when given the uniform gradient amount

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given G:
- Find the present equivalent value when given the uniform gradient amount

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given G:
- Find the present equivalent value when given the uniform gradient amount

- Functionally represented as $\mathrm{P}=\mathrm{G}(\mathrm{P} / \mathrm{G}, \mathrm{i} \%, \mathrm{~N})$

RELATING A UNIFORM GRADIENT OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given G :
- Find the present equivalent value when given the uniform gradient amount
- $\left.P=G\left\{\begin{array}{c}1 \\ - \\ i\left[\frac{(1+i)^{N-1}}{i(1+i)^{N}}=\frac{N}{(1+i))^{N}}\right.\end{array}\right]\right\}$
- Functionally represented as $\mathrm{P}=\mathrm{G}(\mathrm{P} / \mathrm{G}, \mathrm{i} \%, \mathrm{~N})$
- The value shown in $\}$ is the gradient to present equivalent conversion factor and is presented in column 8 of Appendix C (represented in the above parenthetical expression).

RELATING GEOMETRIC SEQUENCE OF CASH FLOWS TO PRESENT AND ANNUAL EQUIVALENTS - Projected cash flow patterns changing at an average rate of f each period;

RELATING GEOMETRIC SEQUENCE OF CASH FLOWS TO PRESENT AND ANNUAL EQUIVALENTS - Projected cash flow patterns changing at an average rate of f each period;

- Resultant end-of-period cash-flow pattern is referred to as a geometric gradient series;

RELATING GEOMETRIC SEQUENCE OF CASH FLOWS TO PRESENT AND ANNUAL EQUIVALENTS

- Projected cash flow patterns changing at an average rate of f each period;
- Resultant end-of-period cash-flow pattern is referred to as a geometric gradient series;
- A_{1} is cash flow at end of period 1

RELATING GEOMETRIC SEQUENCE OF CASH FLOWS TO PRESENT AND ANNUAL EQUIVALENTS

- Projected cash flow patterns changing at an average rate of f each period;
- Resultant end-of-period cash-flow pattern is referred to as a geometric gradient series;
- A_{1} is cash flow at end of period 1
- $\mathrm{A}_{\mathrm{k}}=\left(\mathrm{A}_{\mathrm{k}-1}\right)(1+f), 2 \leq \mathrm{k} \leq \mathrm{N}$

RELATING GEOMETRIC SEQUENCE OF CASH FLOWS TO PRESENT AND ANNUAL EQUIVALENTS

- Projected cash flow patterns changing at an average rate of f each period;
- Resultant end-of-period cash-flow pattern is referred to as a geometric gradient series;
- A_{1} is cash flow at end of period 1
- $\mathrm{A}_{\mathrm{k}}=\left(\mathrm{A}_{\mathrm{k}-1}\right)(\underline{1}+f), 2 \leq \mathrm{k} \leq \mathrm{N}$
- $A_{N}=A_{1}(1+f)^{N-1}$

RELATING GEOMETRIC SEQUENCE OF CASH FLOWS TO PRESENT AND ANNUAL EQUIVALENTS

- Projected cash flow patterns changing at an average rate of f each period;
- Resultant end-of-period cash-flow pattern is referred to as a geometric gradient series;
- A_{1} is cash flow at end of period 1
- $A_{k}=\left(A_{k-1}\right)(\underline{1}+f), 2 \leq k \leq N$
- $\mathrm{A}_{\mathrm{N}}=\mathrm{A}_{1}(1+f)^{\mathrm{N}-1}$
- $\bar{f}=\left(\mathrm{A}_{k}-\mathrm{A}_{\mathrm{k}-1}\right) / \mathrm{A}_{\mathrm{k}-1}$

RELATING GEOMETRIC SEQUENCE OF CASH FLOWS TO PRESENT AND ANNUAL EQUIVALENTS

- Projected cash flow patterns changing at an average rate of f each period;
- Resultant end-of-period cash-flow pattern is referred to as a geometric gradient series;
- A_{1} is cash flow at end of period 1
- $\mathrm{A}_{\mathrm{k}}=\left(\mathrm{A}_{\mathrm{k}-1}\right)(\underline{1}+f), 2 \leq \mathrm{K} \leq \mathrm{N}$
- $\mathrm{A}_{\mathrm{N}}=\mathrm{A}_{1}(1+f)^{\mathrm{N}-1}$
- $\bar{f}=\left(\mathrm{A}_{\mathrm{k}}-\mathrm{A}_{\mathrm{k}-1}\right) / \mathrm{A}_{\mathrm{k}-1}$
- \bar{f} may be either positive or negative

Cash-flow diagram for a Geometric Sequence of Cash Flows

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given A :

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given A:
- Find the present equivalent value when given the annual equivalent value ($\mathrm{i} \leqslant f$)

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given A :
- Find the present equivalent value when given the annual equivalent value ($\mathrm{i} \leqslant f$)

$$
\mathrm{P}=\frac{\mathrm{A}_{1}}{(1+\bar{f})}\left(\mathrm{P} / \mathrm{A}, \frac{1+i}{1+\bar{f}}-1, \mathrm{~N}\right)
$$

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given A :
- Find the present equivalent value when given the annual equivalent value ($\mathrm{i} \leqslant \mathrm{f}$)

$$
\mathrm{A}_{1}\left[1-(1+\mathrm{i})^{-N}(1+\bar{f})^{\mathrm{N}}\right]
$$

$P=$

$$
1-\bar{f}
$$

which may also be written as

$$
\mathrm{A}_{1}[1-(\mathrm{P} / \mathrm{F}, \mathrm{i} \%, \mathrm{~N})(\mathrm{F} / \mathrm{P}, \mathrm{f} \%, \mathrm{o}, \mathrm{~N})]
$$

$P=$

$$
i=\bar{f}
$$

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Note that the foregoing is mathematically equivalent to the following ($\mathrm{i} \leqslant f$):

$$
\mathrm{P}=\frac{\mathrm{A}_{1}}{1+\bar{f}}\left(\mathrm{P} / \mathrm{A} \frac{1+i}{1+\bar{f}}-1, \mathrm{~N}\right)
$$

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- The foregoing may be functionally represented as A = P (A / P, i\%,N)
- The year zero "base" of annuity, increasing at constant rate $f \%$ is $\mathrm{A}_{0}=\mathrm{P}(\mathrm{A} / \mathrm{P}, \mathrm{f} \%, \mathrm{~N})$
- The future equivalent of this geometric gradient is $F=P(F / P, i \%, N)$

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given A :

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given A :
- Find the present equivalent value when given the annual equivalent value ($\mathrm{i}=f$)

$$
P=A_{1} N(1+i)^{-1} \text { which may be written as }
$$

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given A :
- Find the present equivalent value when given the annual equivalent value ($\mathrm{i}=f$)

$$
P=A_{1} N(P / F, \%, 1)
$$

Functionally represented as $A=P(A / P, i \%, N)$

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given A :
- Find the present equivalent value when given the annual equivalent value ($\mathrm{i}=\bar{f}$)

$$
\begin{aligned}
& P=A_{1} N(i+i)-1 \text { which may be written as } \\
& P=A_{1} N(P / F, i \%, 1)
\end{aligned}
$$

Functionally represented as $A=P(A / P ; i \%, N)$

- The year zero "base" of annuity, increasing at constant rate $f \%$ is $A_{0}=P(A / P, f \%, N)$
- The future equivalent of this geometric gradient is $F=P(F / P, i \%, N)$

